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1. INTRODUCTION

Technological developments during the last decades have provided
us with sophisticated devices which are able to collect data automatically

(satellite altimetry, Doppler methods, satellite to satellite ranging) or

semi-automatically (inertial navigation) with an enormous output rate

(e.g., almost 106 GEOS-3 altimeter data). The tendency is clear: to

reduce or eliminate manpower as much as possible in the laborious and

expensive data acquisition process. The time seems to be not far away

when this first step will have reached its perfection.

In the following steps, however, existing knowledge enters into the

data processing stage and with this knowledge enters the human intellect.

In order to make data processing faster, computers have been used

which were designed in such a way as to permit the solution of many

different kinds of problems. A relatively small number of functions is

provided by the system. It is usually up to the user to write his own pro-

grams for his own purposes. Rigorously tested subroutines are imple-

mented into program libraries. A set of programs might be combined

to a large module which would be supposedly capable of handling a

whole bunch of problems. Such kinds of modules are, in general

very large (e. g., a satellite orbit prediction module) and not

quite transparent to the user; therefore, it is highly desirable

that such a module is intelligent by itself. This means that

the module should be able to check the input (data, parameters) for con-

sistency, make adjustments if necessary and assign proper default

values to undefined parameters. Such a requirement makes it

necessary to investigate the way in which decisions are made by

igh



translate it into a computer language. It is most interesting and often

difficult to split up fully automatic human decision processes into

steps or statements and to find the interplay between the visual per-

ception and the processing in the brain. A typical example is the

suppressing of drawing contours within certain regions. We shall dis-

cuss this problem in more detail in Chapter 2.8.5.

The very complexity of such a module usually makes it hard for

the user to understand -- this might be the reason why one speaks

frequently about "black boxes". GSPP, the Geodetic Science Plotting

Package, is such a black box which is designed for the purpose of

graphical representation of data and smooth surfaces. It is a fully

automatic link between the stages of data acquisition ana interpretation

of results. In view of its great complexity and versatility it is very

smart and simple to use; this simplicity is mainly due to the control

part of GSPP which checks all parameters for consistency, makes

necessary corrections, and assigns default values to undefined parameters.

Since one expects GSPP to be fed a large amount of data, all

operations have been carefully checked and optimized in terms of CPU-

time.

Geodesists are used to dealing with data on and outside the surface

of the earth and to preparing contour maps of surfaces like terrain

contour maps, gravity anomaly contour maps or geoid contour maps.

These two-dimensional representations of surfaces have -- besides

providing a general behavior of the surface -- the advantage of allowing

the user to also interpolate, to some extent, the information contained in

; the contours. This makes a contour map superior to a single pro-

file as far as global numerical information is concerned and also

if superior to a three-dimensional view which provides the user a unique

spatial image but lacks numerical information.

Therefore, contour maps are indeed unique and this is the reason

why the present report starts with the discussion of contour maps and

not with profiles as one would expect.
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The user primarily interested in applications may skip the technical

Part A which is intended to throw light into the darkness of the black

box; he may start with Part B and consult Part A when the need arises.

V Z. CONTOURING

Before we start with a detailed description of the whole contouring

process it should be pointed out that GSPP is not designed for the purpose

of representing terrain structures with all its many details as a digital

terrain model will do -- it is designed for representing smooth surfaces

without artificial structures. Such smooth surfaces are derived

from surface data located at the grid points of a regular rectangular

grid. In almost all practical applications we are, however, far away

from this ideal situation, for three reasons: first, the surface information

is sampled at points which are, in general, irregularly distributed

(terrain heights, gravity anomalies, geoidal heights); second, the data

are often heterogeneous in nature and contain surface information only

implicitly (data combinations in physical geodesy); third, the data are

usually disturbed by some kind of noise. All these deficiencies make

contouring a non-trivial and also non-unique task.

Z. 1 Data sorting and retrieving

Theoretically, all available data should be used in

order to really achieve a prediction with the minimum

K variance. Practically, this is neither possible because of the enormous

amount of geodetic data collected so far, nor is it necessary: a pre-

dicted value at a point P depends primarily on the data in the neighbor-

hood; remote data will often contribute very little to the result.

Therefore, one accepts the sub-optimal solution and takes only a relatively
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small number of data for a single prediction into account. All other

data which exceed a certain distance from the prediction point, are not

considered.

This would make the calculation of all distances between all data

points and all prediction points necessary, a very time consuming task

especially when working on the surface of the sphere where "expensive"

trigonometric functions are necessary in order to calculate the distance.

For this reason, it is absolutely necessary to order the data according

to some pre- selected pattern in order to be able to single out the

unnecessary part in a simple and fast way. This is also one of

the properties of data bases. It is not our intention to establish a

sophisticated data base with a very complicated tree structure; all we

want to do is to find a simple way of ordering some irregularly distributed

data.

For the sake of simplicity, we assume data to be 1-point data.

Let (xi , yi ) , i 1, ... , n be the coordinates of a data point Pi in
1

a Cartesian coordinate system. Then an obvious way of arranging the

data would be to select a certain "working domain", which is prefer-

ably a rectangle, by defining the boundaries of the rectangle (xL, x U

YL' YU) , the lower and upper x-and y-coordinates if the rectangle

happens to be parallel to the coordinate lines. This rectangle will

then be subdivided into a number of subrectangles. The idea of the data

sorting process is to

1. findfor each data point the corresponding subrectangle (element),

2. count the number of data within each element, and

3. generate pointer vectors which allow us to find all

data points within a specific element.

Note, that all data remain at their original storage locations -- only

additional information is produced.

Let us now follow these three steps in detail:

I.I

IA

* V -~ -|
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Assume the working domain is subdivided into I J elements

(I in x-, J in y-direction) and enumerate these elements such that

an integer (i-1)4 + j is assigned to the element (i,j). Then for

each data point there exists an integer which identifies an element if all

data are located within the working domain; this vector will be denoted

by a; the value of ak depends only on the position of P

~kaak = (Pk).

The length of a is equal to the number of data points. At the same

time a counter vector b (length = number of elements) counts the

number of data points found in each element. After all data have been
located, b contains information about the totaL number of data within

each element.

The problem is to generate pointer vectors such that it is possible

to find all data within a prescribed element. For this purpose another

vector c has to be generated which has the same length as b and is its

partial sum. It provides the information of the starting place in the final

pointer vector d such that the first data point in a particular element

= (i-1)*J +j has the index

m d[c()]

the second data point in the same element £ has the index

m = d [c(t)+ I

the last data point in element I has the index

m = d [c(l) + b(l ) -1]•

If the working domain does not enclose all the data, the vectors

b and C have to be longer by 1 element such that the number of data

outside the working domain can be stored. In this case b(I*J +1)

stores the number of data outside the working domain and d[c(I*J +1)]

is the index of the first data point found outside the working domain.

11'
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The program responsible for this data organization job is called

OAF; it is independent and can be run separately. The time for the

organization process depends almost entirely cnthe number of data and

increases linearly with the number of data. In order to give an idea

about the efficiency we give one example: 'to order 100 000 data

according to the process described above takes 1. 5 sec CPU-time on

a AMDAHL 470V/6-II computer which, in the opinion of the author,

is quite fast.

2. 2 Prediction

In general, most kinds of data will be irregularly distributed. For
many reasons, however, a regular distribution (preferably on a regular

rectangular grid) would be welcomed:

a) regularly distributed data admit a simple data manage-

ment and an easy data retrieving;

b) a regular data distribution (on a rectangular grid) is

particularly important if one wants to fit a smooth surface

like a bicubic spline function to the data;

c) a regular distribution is necessary for fast post-process-

ing of data using techniques like the Fast Fourier Transform

method; but also the standard least-squares methods
would gain considerably in terms of computer time by

taking symmetries of the covariance matrix into account.

There are a number of possibilities of obtaining predicted (or inter-

polated) values. We will be discussing only two of them, the inversion-

free prediction and least-squares collocation.

2.2. 1 Inversion-free prediction. In many cases we face the

following situation: there is given a huge number of data, irregularly

distributed, of ahomogeneous type and almost free of errors; predict a

reasonable smooth surface. If one would like to obtain an optimal

L1
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solution in the sense of least norm, a least-squares solution is appro-

priate. Minimizing the mean square prediction error leads to least-

squares prediction and least-squares collocation. This method, however,

requires an a priori covariance function to be known which is missing

in many kinds of problems. Moreover, an inversion of a large matrix

or many inversions of small matrices make solutions of such kind

of problems too often a very expensive task.

A simple and cheap (however, not the best) alternative is to define

the predicted value as a weighted average of all data in the neighborhood

of the prediction point. The weights will depend on the distances between
data points and the prediction point. One kind of such a prediction is

the following:

Let (f.), i = 1,... ,n be n homogeneous data; then the predicted

value at a point P is given by

Sfi .n

-- qZwi fi
sip

i=l il

f P n
q W.

i= 1 ip i 1

with sip ... distance between data point P. and
'

prediction point P,

q ... power of prediction.

This kind of prediction has the advantage of exactly reproducing the

data and of not involving the calculation of time consuming functions

and matrix inversions. This makes it particularly useful for large-

scale applications of the type of problems discussed above.

It is quite instructive to compare this kind of prediction with

least-squares prediction:
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Assume we are given 3 error free geoidal heights and want to pre-

dict a geoidal height at a point P. Then the inversion-free prediction

gives the result

f I __ + a z f '  + 3f3)

with ai, i = 1, 2, 3 are weights depending only on the distance between

P and all Pi (and not on the distance between Pi and P.); c is

the sum of all i In the case f 1 =f = f3 we obtain

1 .f

and the predicted value fp is independent of the position of the prediction

point; consequently, the surface generat,.'d will be a horizontal plane. In

the case of a general vector ( fi 3 , the surface will not be a plane

anymore, however, its trend outside the data region (here a triangle)

will be to be a plane with function value equal to the mean value of all

data. The reason is that the differences between the weights

= d 1 6s

6s

tend to zero because of the factor -

The least-squares prediction behaves essentially different

(Cij ... covariances),

2 fp =C C11 C? C13 ft

C13 C23 C3

Under the assumptions made above ( ffi) = error-free geoidal

heights), the main diagonal elements will be constant and equal to the
variance C. Assume now for a moment that the correlation length of

the covariance function C becomes very small compared with the

smallest initial distance between the data; then the covariance matrix
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will be highly dominated by the diagonal and its inverse will only slightly

deviate from a purely diagonal matrix with diagonal elements being

almost equal to the inverse of the variance, - The covariances
-CO

"Pl CP2' CP 3 will be small for large PP.; as a consequence the

surface will become wavy in between the data points and tend to zero

outside the data region. (In the spherical case the surface will be

such that its integral over the sphere vanishes. ) For larger correlation

lengths the predicted surface will become stiffer. In any case, the

covariance function controls the surface; the "reproduction" of the

surface on the basis of its sampled data consists basically of its

"inversion".

Therefore, one main difference between both methods is that in
i l least-squares prediction the surface is generated by actually inverting

the surface information; in the inversion-free surface prediction,

correlations between the data are completely neglected.

A very interesting light has been thrown recently on the inversion-
] free prediction (interpolation) in OSunkel, 1980). It has been sho~xn that (2-I1)

can be represented in terms of base functions B (x),qt n

fp Bq (P'Pi)"
i 1=l

Each base function Bq(x) can be shown to be identical with the Fourierhq

transform of a polynomial spline of degree q- 1. Since 'he Fourier

transform of a polynomial spline approaches a rectangle with increasing

degree q, the base functions also approach a rectangle as the power

of prediction increases. If q , the "interpolation" function defined

by (2. 1) will be a pure step function.

Figure 2. 1 gives an impression of what happens if the power of

prediction is much too large. The data indicated by 11+11 are

"interpolated" by functions which are very close to step functions

(Adigiulzel, 1979). L --i* --
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F IG 2.1 -- Step function like interpolation for very hig h

powers of prediction.

On the other hand, if the power of prediction q is too small, 0 < q 1,

the interpolation function tries to average out all data and, at the same

time, it reproduces the data; this causes the function to produce cusps

power of redi tion
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in the neighborhood of the data points which should obviously be avoided.

Since neither steps nor peaks are what one considers as a

reasonable interpolation function, one of the often accepted compromises

is the choice q = 2 (Schumnaker, 1976, Bybee and Bedross, 1978); other

users rather prefer a value around 3.5 (Bjerhammar, 1973; Davenport

-- private commnunication). GSPP allows the user to m-iake his own

choice between the limit values q = 1. 5 and q = 4. The method de -

scribed above goes back to (Shepard, 1964) and (Bjerhammar, 1973).

Another compromise is a splitting of the weight function into three

or more parts, each of which shows a different behavior (has different

powers q assigned), 0 R
r-1 O< r < -9

3
27 .r< r :5Rw(r) 4 R : 3-

0 R<r

This weight function, proposed by (Shepard, 1964), is continuous and

continuously differentiable and vanishes outside r> R, the radius of

prtediction. Consequently, the choice of R controls the interpolation

behavior and, at the same time, defines the prediction circle. (All

data within this circle of radius R around the prediction point contribute

to the predicted value. ) This function is the default function in GSPP

if no power of prediction is defined by the user.

2. 2.2 Least- squares prediction. The inversion-free prediction

as discussed in the foregoing chapter is applicable in a very special

case, when data are homogeneous and free of noise. These assumptions

are often almost satisfied, however, the general case of heterogeneous
noisy data clannot be treated with inversion-free prediction.

As stated in the introduction, the module described here is primarily

intended for applications in geodesy, more specifically, for purposes

of the determination of the gravity field of the earth. There are many

types of data used in physical geodesy; all of them bearing information

. . . .. .. . . . . ...



about the gravity field, all of them are more or less noisy. The problem

is to optimally combine these data in such a way that the gravity field

determined on the basis of these data deviates from the true one as

little as possible. Least-squares collocation turned out to be particularly

useful for the solution of such kind of problems. The goodness of

the predicted field depends considerably on the covariance function intro-

duced which should match the average behavior of the gravity field as

close as possible (Schwarz and Lachapelle, 1979). For reasons of

continuity, the covariance function will be briefly described.

The general form of a homogeneous and isotropic covariance

function of the disturbing potential can be expressed by

K(P,Q) N n n+ cos pQ) (2-2)
n=N0

with P,Q = points outside the sphere r = RB

r, r' = geocentric radii of P and Q,

pQ = spherical distance between P and Q,

kn  = positive coefficients,
Pn(cos ,) Legendre polynomial of degree n,

n
No  = starting value of the summation (No 2 2),

RB = radius of the Bjerhammar sphere.

K(P,Q) is symmetric with respect to P and Q and harmonic outside

the sphere r = RB.

Geodetic measurements are, in general, nonlinear functionals of

the gravity field(+ station position). After linearization they can be

expressed as linear functionals of the anomalous gravity field (+ station

,: coordinate s).

In order to predict a linear functional of the gravity field at an

arbitrary point, it is first of all necessary to establish the covariance



-13-

matrix which represents so to say the structural relation between

the gravity field and the data. An element of the covariance matrix

C.. is the result of an operation which maps the covariance function13

into the real number line; the mapping consists of applying the linear

operations L. and L. corresponding to the data i and j on the covariance
1 3

function K

C.. L.L.K.

In the same way are the covariances between the predicted quantity

and the data obtained:

Cpi = L L.K.

Denoting the (linearized) vector of measurements by f as above, one

can find a simple linear relation between predicted quantities and data

T F C-i o(2rede3)ed

(Moritz, 1978): fp = CpC rmr eald

f1P = I' Cp2' CPn] Gin
C1 Czz ... C JL

nCzn Cnn n,

Taking also noise into account one has to add to C the corresponding

error covariance matrix of the data which usually happens to be

diagonal. In the general case with incorporated model parameter

determination, formula (2-3) changes slightly; however, we shall

limit ourselves to the case discussed above. The error covariances
between the predicted quantities at the points P and Q can be shown

to equal

T 
a C -Cp C CQ

the variance is obtained for Q P (Heiskanen and Moritz, 1967; p 269 ff.)

I'



-14-

it

The covariances can be derived from a model covariance

function which should be simple in order to keep computation time low;

on the other hand it should have certain properties (represented by

essential parameters) which are determined by the general features of the

gravity field. These two requirements exclude each other. Therefore, it is

generally a rather time consuming task to find numerical values for

all covariances involved, even when using well-designed algorithms

(Tscherning, 1976).

Therefore, it has been investigated if one could get rid of this burden

by taking advantage of finite elements and approximate the covariance

function (Slnkel, 1978). The idea behind this is simple and has been

frequently applied in many fields, the network principle: generate a

net of fixed points (here grid points in a two-dimensional space) and

perform very accurate measurements at these points (here, calculate

exact covariances); these fixed points serve as a basis for small scale

measurements which can be obtained from simple devices (here, differentia-

tion - interpolation of finite elements representing the covariance func-

tion in a certain range). The bicubic spline function turned out to be

particularly useful for such a purpose. In (SUnkel, 1979 ) such a

covariance approximation procedure has been described; a FORTRAN IV

computer program which has been designed for such purposes, is used

by GSPP. This program allows us to obtain covariances of second and

lower order derivatives of the disturbing potential at a CPU-time level

of some 3. 10' sec on a IBM 370 system. This advantage, however,

is to some extent balanced by disadvantages of one needing: to know the

maximum range (in space) in which one is working, to generate a

network of covariances and store this network on a. (advantageously

permanent) file before one can actually call the covariance approximation sub-

routine; and finally to realize covariances differ slightly from the exact ones

derived from the model covariance function; the differences, however,

can be kept arbitrarily small. This is the price we pay for a 90 0
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reduction in the computation time for covariances.

It should be clear that such sop.isticated procedures require

decision making before actually wing the module GSPP. This means

that the covariance approximation procedure should be used only for

large scale applications -- for such a purpose it was designed. In

such cases it really pays back by saving enormous amounts of computer

time. For medium and small scale applications one can use the exact

covariances derived from some model.

Detailed information about the covariance approximation algorithm

can be found in (SUnkel, 1979 ); the principle can be briefly described
in the following:

An important property of the covariance function which makes a

two-dimensional approximation for theoretically all points outside the

Bjerhammar sphere possible, is its dependence on essentially two variables,

the spherical distance 0 and the product rr'. Since cos can vary only

between -I and +1 and R rr' has a minimum value of 0 for r

and a maximum of I for r r' =RB, the covariance function's domain of

4 definition is the rectangle
i <<

with t[ = 1, 0 < s<

with

~ Bt =Cos rr'

ii  Since practically all geodetic operations are performed on or

close to the surface of the earth, the domain of definition is reduced

considerably for all practical applications, e.g., working within a

spherical distance range of 0 : 6 5 100 and within an altitude range

from 0 to 300 kin, the domain reduces to

[ 0.985 5 t 1 1 , 0.999 > s > 0.912

Once the user has made his decision about the rhnges in which he

is going to work, a rectangular grid in s 'and t can be arranged. A

I L
... . .. F
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specific program has been designed for the calculation of different kinds

of covariances at all grid points. This network of covariances has

to be calculated. The calculation itself is a three stage process: in

the first part the grid element corresponding to the particular data :1

location has to be found; in the second stage the necessary interpolations

and differentiations of the covariance network are performed; and in

the last part the program calculates the partial derivatives of cos

with respect to the spherical coordinates w, X, ', >,' at the particular

points P and Q. So far as covariance approximation is concerned.

The prediction program itself has control over the prediction

region, a rectangle surrounding the prediction point. This region can

be defined by the user in terms of a radius of prediction. As long as
the program finds a mninimumn number of data for a single prediction, it
is fine; if this is not the case the prediction region will be enlarged

until a minimum number of data have been found. Three different

kinds of prediction are possible, the inversion-free prediction for homo-

geneous and error-free data, least-squares prediction with accurate

covariances derived from a model covariance function, and least-

squares prediction with approximated covariances. In the case of least-

squares prediction, the sgstem returns, apart from the predicted grid,

also the root mean square prediction errors. The calculation of these

errors can be suppressed. The predicted grid represents the surface

insofar as the bicubic spline interpolation function based on this grid

is interpreted as the surface in consideration.

2.3 Least-squares regression

A surface predicted by one of the methods discussed above is

capable of representing even small and local details of the surface if the

data contain such an information. Such detailed representations can

only be described by a large number of parameters; in case of least

squares prediction the number of parameters (coefficiento is equal to

the number of data. For many reasons, however, one is often not
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only interested in the local details but also in the global features of

the field represented by the data. Such global features can be described

by a relatively small number of parameters. The problem consists of

the selection of the model, which is usually a polynomial of some degree,

in establishing the relation between the data and the model parameters

and in the solution of the linear system of a size equal to the number of

parameters. The most obvious solution is a least-squares solution.

In this context we speak about least- squares polynomial approximations

or simply about least-squares regression. Typical examples of

practical applications are trend eliminations in all natural sciences

(e.g., determination of spherical harnomic coefficients up to and including

degree and order N based on data sensitive to the earth's gravity field).

The basic idea comes from an old interpolation theorem, the

century-old Weierstrass approximation theorem and the least-squares

principle. Very loosly speaking the first theorem says that all n

coefficients of a polynomial model can uniquely be determined from n

independent data linearly related to the model. Weierstrass' theorem

asserts that a continuous function can be uniformly approximated by a

polynomial on a closed interval. The least-squares principle guarantees

the uniqueness and existence of a shortest distance between a point

(vector of data) and the hyperplane spanned by the linearly independent

base functions (polynomials 1, x, y, x 2, xy, , ,yk*

(polyomial )P The
parameters (a.) can be immediately found from the solution of the1

normal equations:

<F -a, 4 > =0 (2.3-1)

with F = (f. 3 = ( Lif ) ... data (L... linear functional)

a = ai 3... polynomial coefficients

-= j 3 ( Li j ... design matrix

(Pj ... base functions ).

* (Davis, 1975, pp. 24 ff., 107 ff., 158 ff.)
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With an a priori error covariance matrix P-of the data, the well

known solution for the parameters is

a 0TP)1 PTpF ; (Z. 3-?.)

the individual data reproduction errors are given by

AF F- Oa. (2.3-3)

IE the number of parameters is equal to the number of data, 6F

vanishes identically (simple interpolation).

In order to avoid any misinterpretation, it should be pointed out

that least-squares polynomial approximations do by no means replace or

compete with prediction solutions based on the least-squares collocation

principle or any other prediction method; they supplement these solutions

insofar as they provide a trend information. Such trend calculations may

be quite useful for a number of problems; however,

the user should be warned not to work with a high degree trend poly-

nomial and to make sophisticated interpretations on the basis of the

results: polynomials show the tendency to oscillate between data and

do not hesitate to show completely abnormal features in data free regians.

(see as an example Fig. 2. 2).

00

.00 '0 0

Fig. 2.2 Least-squares regression example

2.4 Smooth surface representation

To piedict values at points where no measurement has been per-

formed, is usually very expensive in terms of computer time. The• I
F '
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reasons are multifold: it is necessary to compute distances between

each calculation point and theoretically all data points (this deficiency

is shared by all prediction methods); the use of least-squares collocation

usually involves the calculation of trigonometric and/or logarithmic

functions, and the multiplication of large vectors with large matrices

for each single prediction. (We don't consider at this point the inversion

of the covariance matrix because this is independent on the number of

predictions.) Therefore, it is absolutely necessary to find a representa-

tion of the surface which is

a) based on the data and/or the predicted values,

b) smooth,

c) local,

d) simple.

Requirement (a) is evident; a sufficient degree of smoothness is desired

in order to admit surface differentiations (slope maps, etc.),

the interpolating function should be sensitive to a point disturbance only

in its neighborhood which is referred to as a local behavior; last,

but by no means least, should the interpolating f,-iction be simplt in

order to make the interpolation/differentiation process fast.

Naturally, there does not exist a function which fulfills all these

requirements fully. Single polynomials are not local, linear interpolating

elements are not smooth. An optimal compromise is possibly a bicubic

spline function which is sufficiently smooth (continuous second order

derivatives), is strictly local, and still a relatively simple interpolating

element. A disadvantage, however, is that bicubic spline functions are based

on a regular rectangular grid; smooth surfaces based on irregularly distrib-

uted data are possible; the computational effort, however, is huge. On the
other hand, a regular rectangular grid of data is anyway the most natura' way

I' ~ of storing two-dimensional information, and therefore, this restriction looses

much of its power. In the following we give for the sake of completeness a

short description of spline interpolation in one and two dimensions which is a

U;
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short outline of (SUnkel, 1980) and the procedure GSPP uses to smoothly

represent a surface based on gridded data.

2. 4. 1 One-dimensional cubic spline.

The one-dimensional cubic spline is a basic tool not only for

representing a smooth curve, but also for surface fitting. The cubic

spline is just one of an infinite number of splines; its pleasant proper-

ties make it unique among all splines. It is a function which is twice

continuously differentiable and therefore very smooth. Basic for the

cubic spline is the cubic basis-spline, or simply B-spline, defined on a

grid with constant grid spacing equal to 1. (in such a case one usually

speaks of cardinal splines because of its definition on the sequence of

cardinal numbers.) Such a cardinal B-spline is a piecewise cubic

polynomial with bounded support; it is twice continuously differentiable
on the whole real line (-., .Centered at the zero point, it can be

expressed by

B(x 1k 4 - + )(2.4-1)k=0

with
= x for x> 0

0 otherwise

(I.J. Schoenberg, 1973, p. 11). Its support is the open interval

(-2, 2). Explicitly written, B(x) satisfies the equations

31x - 6x' +4 for 0:IxI 1

B(x) x1 - 'x[ +6xz - lZlxI+8 for 1 rIxJI~ 2

, (0 Z Ix

It can be seen immediately that B(x) is symmetric: B(x) B(-x)

Its function values at the knots are

B6') = 0, BL1) = -!, B(0) =" (2.4-2)

i Figure 2. 3 shows the cubic cardinal B-3pline together with its

derivatives up to and including order 3 which is a step function.
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CARDINAL B - SPLINE OF DEG;,EE 3

DO ... FUNCTION
DI .,. 1. DERIVATIVE
D2 ,.. 2. DERIVATIVE
D3 ... 3. DERIVATIVE

3.0 -3.0
3DO
/D1

D2

2.0 D3 2.0

1.0 1.0

0.0 ... 0.0

-1.0 -1.0

-2.0 -2.0

-3.0 -3.0

II I i I

-2 -1 0 1 2

Fig. 2.3 Cubic cardinal B-spline with derivatives
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Given function values f and second derivatives f£" at allkk
integers on the real line, it can easily be shown that

F (x) =. ck B (x-k) (z.4-3)

reproduces the data and is 4 unique interpolating function (Stankel, 1980).

The coefficients (C k) can, in fact, be expressed by c k f f

In almost all practical applications, however, the second derivatives

are not known. Therefore, the question arises whether it is possible

to find an interpolating cubic spline which is only defined on the

function values (f k at the grid points. Or, formulated differently,

one would like to have functions S(x) such, that

F(x)f (x-k) (2.4-4)

is a cubic interpolating spline. Such a function does exist

(I.J. Schoenberg, 1973); it can be expressed as a discrete convolution

of the form

S(x) . B(x-j) (2.4-5a)

the coefficients (¢'. can be determined from the condition that

= _ .f1 for k = 0
S(k) = k { fork (z. 4-5b)

Since the cubic B-spline has non-vanishing function values at only 3

knots (-1, 0, 1), it follows with (2. 4-5a, b) that the infinite sum reduces

to a sum over only 3 B-splines for S(x) = S(k):
S(k) =k-1 B(1) + kkB(O) + ak+l B(-i), Y k,

or explicitly ,
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$ •p

s(-Z) a-- 3 B(1) + a.B(0) + a-, B(-1) 0

S(-I) = .ZB(1) + U.IB(0) + ao B(-l) = 0

S(O) = a-. B(1) + (o0 B(0) + at B(-1) = 1 (2.4-6)

S(1) = a 0 B(1) + a IB(O) + Q B(-I) = 0

S(Z) = al B(l) + a. B(O) + a 3 B(-1) = 0

Therefore, in order to find the infinite vector of coefficients

(a. j = -do, ... , o , we have to solve the infinite system of

equations (2.4-6) which, with B(k) from (Z.4-2), is given by I:ii

0 1 4 1 .* 0

... 0 1 4 1 0... a. 6 (.,
9..0 1 4 1 0... at 0

... 0 1 4 1 0... a0o = 6 . (2.4-6)'

.. 0 1 4 1 0... a1  0

The transformation matrix is of infinite dimension, is s-fmmetric, and

because of its "row-shift" structure of T'eplitz form, it is

circulant. Such kind of matrices are well known to have inverses of

the same type (R.M. Gray, 1971); with the help of Fourier techniques

it is fairly easy to find the solution vector ( . In (H. SUnkel, 1980)

it is shown in detail how the actual solution can be obtained; the

p' result is

aj =/3 (-Z + /3)31 (z.4-7)

Consequently, the cubic cardinal spline with function values equal to

kL I-. ... .. _



zero apart from the zero point, where it assumes the value 1, is given

by

s(x) = 3). (-2 + f3)Iii B(x-j). (2.4-8)

Its behavior can be judged from the graph shown in Figure 2.4:

1.25 - 1.25

1.00 1.00

0.75 - - 0.75

0.50 0. so

0.25 F 0.25

0.00 - 0.00

-0.25 i -0.25

-4 -3 -2 -1 0 1 2 4

x

I Fig. 2.4 Fundamental Cardinal Cubic Spline

This spline which is known as "fundamental cardinal cubic spline" has

unbounded support, is twice continuously differentiable, consists of
I,

6

[
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cubic polynomials within each interval, is symmetric and interpolates

the .nfinite data vector [...,OO, l,0, ,.... Each data vector

different from the above one can uniquely be spline-interpolated by a

linear combination of fundamental splines with tht. function values at the

grid points as coefficients,

F(x) fk S(x-k)

In the discussion abovc we have limited ourselves to cardinal cubic

spline interpolation on the whole real line. This is for maiy reasons

a restriction:

a) in all practical problems data are given on a limited

part of the real line;

b) often the data are not regularly distributed with grid

distance = 1;

c) cubic spline interpolation is just one kInd of spline

interpolation; why not use another one, say quadratic

or quintic ?

There is a good reason to discuss very isolated cases: because

they show up the very behaviour of the gbneral solution. This is why
cardinal spline interpolation has been discussed and not spline inter-

polation on an irregular limited grid of data. In such cases the formulas

are no longer as simple (the matrix in (2.4-6)' is not as regular, but

still tri-diagonal) -- the features, however, remain the same. As

far as point (c) is concerned, there is a simple answer: cubic spline

interpolation has been chosen not only as a compromise between linear

interpolation and spline interpolation of highest smoothness (which is a ,

sin x/x - interpolation as shown in (H. SUnkel, 1980) ); it has also

been chosen for serious practical reasons: the cubic spline still

retaines a high degree of simplicity, while its attractive features

(smoothness, localness), usually adherent to more sophisticated interpola-
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tion functions, remain. Two of its properties are worth being at least

mentioned: the cubic spline minimizes the overall squared second

derivatives (which, in the case of small first derivatives, approximately

corresponds to a minimization of the overall curvature and, therefore,

the elastic energy),

[F"(x)1z = min. (2.4-9)

among all possible interpolating functions. This property is called the

minimum norm property. The second one, called best approximation

property, guarantees that the interpolating spline has smaller distance

from a given function (sampled at the data points) than any other non-

interpolating spline; distance, in this context is defined via the pseudo

norm (2.4-9).

As far as approximation properties are concerned, the following

error estimates can be shown to hold (Ahlberg et al., 1967):

IF(a(x) Wh-(x)I 4 hX) I aIDf(x)idx'  = o, 01 (2.4-10)

with h denoting the grid distance and f(x) the function to be approximated

by the cubic spline F(x). Similar error bounds hold for second and third

derivatives.

2. 4. 2 Two-dimensional cubic spline.

Analogous to the one-dimensional case one can define a function

of the independent variables x and y, interpolating all data on an infinite

regular rectangular grid with constant grid distance equal to I (cardinal

. Igrid) such that the interpolating function is twice continuously differ-

entiable with respect to both independent variables x and y:

(x, = -- k B(x-k) B(y-I). (2.4-11) 0i

I
.~ -. .. .. ... . . . ,
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As in the one-dimensional case, the coefficients [c kl are not simply

the function values at the grid points, but linear combinations of function

values with derivatives. The grid information is hardly ever

available and, therefore, one intends to find base functions such that the

function values at the grid points are identical with the coefficients

[c kl3 in (2.4-11). This is in fact possible; the unique fundamental

bicubic cardinal spline function is just a product of the one-dimensional

splines discussed in Chapter 2.4.1:

S(x, y) = L .o. B (x-i) B (x-j). (2.4-12)

This spline which is known as "fundamental cardinal bicubic spline" has

Lunbounded support, is twice continuously differentiable with respect to

x and y, consists of bicubic polynomials within each cell of the grid,

and interpolates the infinite data array 6k 61

0 1 0...

. 0 0 0...

Its behavior is similar to that of the one-dimensional spline

Figure Z. 5 shows its main features.

Each data array which is different from the above one can uniquely be

spline-interpolated by a linear combination of such fundamental splines

with the function values at the grid points as coefficients,

F~xY) fS~x-) S(-l)(2.4-13)
-0 .0 fkl

As before we have limited ourselves to the presentation of cardinal

cubic splines defined on the whole two-dimensional plane. This ideal

case will never be met in practical applications; a bounded support
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Fig. 2. 5 Fundamental bicubic cardinal spline

causes the formulas to become slightly more complicated, but the main

features are retained. A non-uniform grid is also possible, however,
it has to be generated by lines parallel to the coordinate lines. GSPP

does not deal with such a case.

As far as minimum properties are concerned, there is also

an analogy with the one-dimensional spline) the bicubic spline

minimizes the following integral:
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L dxdy min. (2.4- 14)

among all possible interpolating functions (minimum norm property)

and the interpolating spline has least distance (where "distance" is

defined via the norm (Z.4-14)) from a given function, sampled at the

grid points, than any other non-interpolating spline (Ahlberg et. al., 1967).

As far as approximation properties are concerned, it can be shown

that the approximation error depends on the grid spacing in the following

way:
3-01 3-a

7F(x, y) . f(x,) -(h + hy

y= + 8 6 3,9: a 3'J

and h., hy grid distances in x and y-direction.

2.5 The frequency content of a bicubic spline surface

A bicubic spline surface is based on data (function values)

distributed on a regular rectangular grid. Formulated differently, the

bicubic interpolating spline is a smooth function interpolating all samples

of the original function.

It is well known from the sampling theorem (see e.g.

E.O. Brigham, 1974, p. 83 ff) that the original function can be

exactly reconstructed from the samples, only if the original function is

band-limited with highest frequency fma' and the sampling interval h V

is smaller than or equal to 1/2 fm ; the frequency 1/h = Zf rrx is

called the Nyquist sampling rate.

In general, the sampled functions are not band-limited and no

interpolation function is able to exactly reproduce the original; this fact

is called aliasing.
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To know which frequencies can be represented by a cubic inter-

polating spline is of interest by itself; moreover, since operations like

differentiations are performed not on the data but on the interpolated values,

it is important to know how the interpolated values respond under such

operations; this can be seen best in the frequency domain.

In order to study the frequency behavior of bicubic splines, we

remember that, according to equation (2.4-13), the two-dimensional

spline base function is just a product of one-dimensional splines.

Therefore, we investigate now the frequency behavior of the one-

dimensional spline.

2.5.1 Spectrum of the cubic spline. We define the spectrun

of a function f(x) as its Fourier transform

F( ) Jf x)e "  dx , i5--- (.5-la)

with its inverse

f (xi)Fwe d " (2.5- b)

We are interested in the case of f(x) to 'be a c cbic spline. There are

at least two ways of approach: a delicate and mathematically rather

involved one which starts with the spectrum of the B-spline, takes ad-

vantage of the properties of Euler-Frobenius polynomials, and derives

the transform of fundamental cardinal cubic splines; this approach car

be found in detail in (M. SUnkel, 1980). Here a much simpler and

straight forward derivation will be given which is based on formulas
derived in (H. Sunkel, 1977a). In the following it will be assumed that

data are given at all integers from -- to +- and that a cubic spline

should be fitted to these data. Furthermore, the data should be such that

the integral (Z.5 -la) exists. Since we know from Chapter 2.4 that the

cubic spline consists of cubic polynomials within each interval (between

two consecutive data), we can split up the integral (Z. 5- la) in a countable

iIi



infinite number of integrals, each one being extended over one interval

of length 1. Consequently, the contribution of the cubic polynomial

defined between the integers m and m+l is given by

m+ I

F(M) _- j f(m)(x) e 'iXdx

mii

m+l m+ I
= j f(m)(x) cosw- - i j f '(x) sin wx (2.5-2)

m m

with the cubic polynomial f()x). Taking (Z. 4-...)into account,

equation (2. 5-Z) can be split up further into

3.

F (N~) a i) (n(- (n (2. 5-3a)
k=O 

( and k

with [(m)] being polynomial coefficients, and Ck (w) ant dsm k(W

the real and imaginary part of the kth degree polynomial contribution

for the interval [m, in+l]:

c(M) m+l Cos W xk -,f (x-)i dx; (Z.5- 3b)

in() sinw x

the result of these simple integrations can be found in (H. Siunkel, 1977a,

p. 37 ff.):

(Mn) (Mn) l~~nC )(w) - is -(W) -L -_e iun

k - ii ic e.)
C () W - isM) (to)  _k [C(m )(t' - is(m) - e

k = 1,2, ... (. 5-4)

k_

- - - - - - - - - - - - -
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After some manipulations it is possible to express the contribution of

a cubic polynomial, between the interval [im, m+I ], to the spectrum

F(W) in the form

F k k +I k -k=O (iW) 1+ r=O 0 r: !

The four polynomial coefficients (a 3 , k-0, ... , 3, however, depend

linearly on the function values f£o f and the derivatives f•
' min+m

The goal is -o figure out all coefficients of f ro £ f ' , an M+

and finally to express ' m and f'm+I by the infinite vector (fro

Evaluating (2.5-5) explicitly , one finds the "contribution" of

all f to bem

f ei mel

m -iW e i We-

since fro!I e e fm

the contribution of all fm+I can be shown to be

2f m + I rl+ ( 3ei'] (2. 5-6b)

'!t.=m W W
In a similar way one obtains the contributions of f' and f'

in in+1

Zfiwm( -1 6

and ~f e'in(m{ [I" 6 (leiW)]_ -i (2 +eW (1. (Z.5-6d)

_go m
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introducing eL + e 2 co sW and e - e = Zi. sinw. , the

sum of (2. 5-6a) + (Z.5-6b) and (2.5-6c) + (2. 5-6d) can be written as

f e-i* • f 1-cos ,1)-2 sin (2. 5-7 a)
m

i') V~ ei~ [4 1 sin w - 7-74 (2+cos w )]. (2. 5-7b)
m W

There remains still fV to be expressed by f it can bem m

shown that f is a linear combination of f.rn

f 3 -- .(f - f ) (2.5-8)
m j1 i rn+j m-

with coefficients a. = O = (-2 +/ 3 )j . Taking this relation into account,3

Sf' e - i m  can be transformed into

M 3 Z ~ jf "m-j )

taking advantage of the identity

40

e-" a 01e . j f
Sm-J m=D

which is the frequency equivalent of a "time-shift", and interchanging

the sequences of summation over m and j, one obtains

so 'e~ ~ i(L so .( 1 W .e ) - w a* e I =ax - (eij - e - _
"  ii

t0M3M-~
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and with e e1 3ij = Zi' sin (jW~),U U

ft e- i aM = -6i[ L. sin(jw0)]*[ f e iWaM] (2. 5-9)

In j=l 3 M

Because al = 0.2768 < 1, the first sum in above equation can

be expressed in closed form (Gradshteyn, No. 1.447, p. 40),

ssno

sin(jW) = E
= j=l 1-20cosw+

which, with a = -2 +/3 reduces to

1 .IsI (z.s5-n)Ssin (jw) - Y (2.5-10)
j=j

and, with (2.5-7b), (2.5-9), and (2.5-10), the contribution of all f'
m

to the spectrum is given by

36 sinzw +I_sinW)" f eim

o4 (Z+ cos W) W3  m

Adding the contribution of f from equation (Z.5-7a), we obtain for them

whole spectrum

12 (l-cos o -25M

F (Z+coscu) ..W r-

with the identity

sin - )4 (l-cosw0)- sw-
w 2

the Fourier transform of the cubic spline is finally given by

I

4 [
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sin O

F( ) f e (Z. -12)~m
Z+Cos -m

This result is very interesting and deserves to be discussed:

Let us first investigate the summation part of F(W):

1F ) ee m (2.5-13)

This is precisely the discrete Fourier transform of the infinite data
vector (f m , m G- ... , o (see e.g., E.O. Brigham, 1974). There-

fore, its inverse Fourier transform should again be the data vector:

f r 27T (J)e dw

= f S-iWM e i da. (2.5-14)
21 M

The integral in the above formula can also be written as

CO

Se- iW m e iX dw .Je iW(x-m)d

U, S

f cos W(x-m)do + i sin w (x-m) d.

The second integral vanishes because of the asymmetry of the integrand.

The first integral can be split up into
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so ( k + I) v
CoVx-~x (2. 5- 15a)j cos c (x-m)d = cos (x-m)dx.5 )

-O (Zk- 1)"-

(2k+l)~n IzT for x = m
Since fcos (x-m)d =

(Zk- I)ir 0 otherwise

the above integral is nothing else but

cosW (x-m)dw = air 6 (x-m) (2.5-15b)

6with 8() the Dirac delta distribution. Therefore, f(x) in (Z. 5-14)

reduces to

'1

f(x) = -- ir m 6(x-m)
ZIT m

or -

f(x) "" m6 (x-m),

a sequence of impulses [ff , m -40 , called an .,impulse
m

comb" (the product is to be understood in terms of distribution theory).

This concludes the inverse Fourier transform of F (w).

The first part of F(w1 ), the term

3 in Z 4s( = 3 4

Z+ cos (aj

z

is the Fourier transform of the fundamental cardinal cubic spline; this

has been proven before. Since F(W) is the product of S(w) and F W,

F() = s( )F ()

V4
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we conclude from the convolution theorem that a cardinal cubic spline

f(x) corresponds to F() with f(x) being the result of a convolution of

a fundamental cardinal cubic spline S(x) with the data sequence

(sequence of impulses),

S(X) =s() f 8 (x-m)
m

- f f" s(t) 8 (x-m-t)dt,

f (x) I Z m S(x-m)
- m

The above equation is identical with (2.4-4) and so is the circle closed.

Now we can also see the more elegant way of deriving the Fourier trans-
form of the cubic spline: find the Fourier transform of the fundamental
cardinal cubic spline and multiply it with the discrete Fourier trans-

form of the data sequence. This approach can be found in (H.SUnkel, 1980).

Let us once more consider F (() and assume that F (W) = 0 for

IwI> ff , or in other words, let F (W) be the Fourier transform of a

frequency band limited process (function). Then the sum in equation

(2.5-15) reduces to a single element, the integral

cos W (x-m)dw, sin I(-m)
X-M

which, with (2.5-14), leads to the interpolation function

sin 7r(x-m)
£(x) = m -T (xm) (2.5-16)

This function is interesting insofar as it can be shown to be an inter-

polating spline function of highest possible deg'ee (I.J. Schoenberg, 1973).
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It is infinitely often continuously differentiable, but suffers from localness.

It is also remarkable in that it is exactly the function which reproduces

an original IT- band-limited function sampled at a sampling rate equal

to 1. This is the essence of the sampling theorem. Therefore, using

(2.5-16) as interpolation function, corresponds to the assumption of an

originally band-limited function with highest frequency w= 1 (the

Nyquist frequcncy).

The cubic spline, however, shows a somehow different behavior:

strictly speaking, its spectrum is not band-limited, buc the Fourier

transform of the fundamental cardinal cubic spline

sin )4 (2.5-17)

2 +cos W

is such that it practically anihilates all frequencies above w = 2 .

This factor is of interest because it varies with the degree of the

spline. In the case of a step function, which is the spline of lowest

degree -- 0, this dampening factor degenerates to

Ws

i-

in the case of the function (2.5-16), which is the spline of highest

degree -- 0, this factor degenerates to a window

1 for lw l -' IT

S(W)= (2.5-19)
0 otherwie

In between these two extremathere is the large family of splines of all

possible degrees. A graph of the factor (2.5-17), which is at the

same time the Fourier transform of the fundamental cardinal cubic

spline, is shown in Fig. 2.6.
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Fig. 2.6 Fourier transforms of a fundamental cardinal cubic spline

The graph shows clearly that the lower frequencies w iTr of
, the cubic spline are dampened relative to the window (2.5-19) of the

spline of infinite degree expressed by (2.5-16). This dampening in
i lI the lower frequencies c iT is exactly compensated in the higher
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frequencies W > IT . The reason for this is that the integral of the

Fourier transform of the cardinal spline (and all other splines as

proven in (H. S inkel, 1980) )is equal to if,
" sin -

3 2 )4da TZ+Cos W W

0 Z

Consequently, the amount of dampening in the low frequencies 1 1T

is equal to the build-up of frequencies for w > IT

s1- ~f2 d sin -r 3 2 3 2 )4
o~ ~ 2+os Zcos W_

2 if2

Summarizing we can say, that the frequency dampening of a spline

of arbitrary degree in the frequency range 1w jI 5 T is exactly com-

pensated in the range ( IT, 0) , relative to the window (2. 5-19). The

higher the degree of the spline, the better is the approximation to this

window. Therefore, the dampening of the lower frequencies and the

build-up of higher frequencies must be caused by the limited degree

of continuous differentiability of the spline (a kind of Gibb's phenomenon).

For this reason we conclude that the fiequencies W> IT are not

reliable anymore -- it is more or less frequency noise which is only

present in order to compensate the deficiency in the range wt < If

To understand this is essential in order to get a better idea of

how reliable differentiated splines are.

2.5. 1. 1 Spectrum of the differentiated cubic spline. The

module GSPP is also capable of providing derivates of profiles and

surfaces up to and including second order. In order to better under-

stand the reliability of the output, which is a differentiated cubic

(bicubic) spline, it is essential to investigate the impact of a differentia-

tion on the spline in the frequency domain.

HI
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I1This time we go the short way and make use of the fact that the

cardinal cubic spline is the result of a convolution of a fundamental

cardinal cubic spline with an impulse comb of data (the sequence

f(x) -S(x) * f 8(x-m) (Z.5-20)

The differentiated cardinal cubic spline is likewise given by

f'C x) = S'I(x). fm 6 (x-m) (2.5-21I)

The corresponding equivalent in the frequency domain is a product of
the Fourier transform of S'(x) with the Fourier transform of the

impulse comb; the latter is given by equation (2.5-13),

I iW m

F rom (2. 5-12) we know the Fourier transformn of S(x) to be
0be

3 sin-
Z +cos .,

2

and therefore, S(x) can be obtained from the inverse Fourier transform,

I W

S (X) = T1 f S(w)eU dcw

S'(x) as derivative of S(x) with respect to x is then given by

ad i S(Fu) iee dt (2.m5-m2)

and its Fourier transform is simply

4



+i(- )x
_@00

je~ ' cx Z IT1 6(W -

we obtain

s((W) = i S(w) w (W-Z )d,

which, because of the property of the 6- function, reduces to

S(I)(W) = iWS(W) . (z.5-23)

And finally, the Fourier transform of the differentiated cardinal cubic

spline is

F (1) = s(W)(). F (.)

, (,) f e m (Z.5-Z4)

2+ cosW 10. m

We recognize the well-known fact that a differe-ntiation dampens the

lower (&j < 1) and amplifies the higher (w> 1) frequencies. For

comparison purposes we also give the Fourier transform of the highest

possible degree (10) cardinal spline,

iw A f e for W I

F (W() =
o for JWj >

The graphs in Fig. 2.7 give a comparison of both transforms for first

and cond order derivatives. Notice the shift of the frequency sensitivity
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Fig. 2.7 Fourier transforms of spline derivatives I
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maximim towards w. 1T with increasing number of differentiations.

What are the consequences of this? Since the fiequency resolution

becomes worse for higher frequencies, the reliability of spline

differentiation decreases with each differentiation and the frequency

noise represented by the frequency part w > IT gains more influence

on the result of the differentiation.

Z. 5. 2 Spectrum of the bicubic spline. Recalling the defining

equation (2. 4- 13) of the bicubic spline

f(x, y) f S(x-m) S(y-n) (Z.5-25)
cubic) mn

with £f 3 the infinite data array and S(x) the fundamental cardinalMn

cubic spline, it is obvious that the bicubic spline is a tensor product

of cubic splines in x and y. Therefore it is pretty easy to find the two-

dimensional Fourier transform
IS

F[ f Wf(x, y)e(1x y)d (2.5-26)x y .
-O -40

Since (Z.5-Z5) is a two-dimensional convolution of a two-dimensional

impulse comb with a two-dimensional fundamental cardinal cubic spline

f (x, y) =S(X) S (y) * * 2 n 6 (x-m) 6(y-n), (2.5-Z7)

the corresponding Fourier transform F(w xf W ) is, according to the

convolution theorem, simply a product of the Fourier transform of the

Z-D fundamental cardinal cubic spline and the Fourier transform of

the 2-D impulse comb.

To find the first is easy, it is just a product of two one-

dimensionvl transforms,

s (W., S) =s() .y y
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WI Wi-n *~ sin L ,
V 9 2 2 4 (2.5-28)

X~ Y~ ____ _ (+co s W.,X)(2 + Cos Wy WX (2W-8
2 2

the latter is sirnply the Z-D analogue to (2.5-13),

F(Wx, W) Z f e-i(Im (2.5-z9)~mn

And finally, with (2.5-27), the 2-D Fourier transformation of the

cardinal bicubic spline is given by
iIll

9 sin * A )4
S (2 + cos x)(Z+ Cos Wy) Wx W "

2 2

f frne-(x n (2.5-30)

Expressed in terms of the bicubic spline coefficients, the above equation

has the form which is analogous to (2. 5-5) of

(m, n) ei(m +wn)

m= 0 n=- k=O 1=0

k-r

' • -e (k -r)"(ix) k+ I (i/)1+1 r=O

FleiY 1 (iW -s 1
L S=o". (2.5-31)
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An equivalent expression can also be found in (Bhattacharyya, 1969).

All that has been stated so far for the one-dimensional spline, carries

over to the Lwo-dimensional one:

There exists a highest possible degree ( , ) Z-D cardinal spliie,

which is fully analogous to (2. 5-16), with the form
W oL Z.,sin 7T (x-m) . sin V (y-n)

f (' Y) fmn 17 (x-m) ii (y-n) (Z.5-32)

This function is infinitely often differentiable, but suffers from localne-s

if compared with the bicubic spline. It is the interpolating function

which reproduces a band-limited function with highest frequencies

(W =17, Wy = I at a sampling rate equal to 1. Therefore, using

(Z.5-32) as interpolation function, corresponds to the assumption of an

originally band-limited function; if this was not the case (as usual in

almost all practical applications), the interpolating function suffers from

aliasing effects.

The bicubic spline's spectrum is, strictly speaking, not band-

limited, but the Z-D Fourier transform of the fundamental cardinal

bicubic spline (Z.5-28)anniliates practicqlly all frequencies above

= , w -: 2 . The frequencies above w = , however, are

caused by the discontinunity of the splines third derivative. It is a

kind of Gibb's phenomenon; therefore, these higher frequencies represent

more or less only "discontinuity noise", which is exactly compensated

in the frequency range IW i . This compensation causes the lower

frequencies to be dampened (compare Fig. 2.7 ).

2.6 Practical 1-D and Z-D spline routines

2.6. 1 The cubic spline routine. In chapters 2.4 and 2.5 a

somewhat artificial case has been discussed: splines based on an

infin te number of data, uniformly distributed on 4 grid with constant

grid distance equal to 1. The discussion has been performed for this
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exotic case because it is considerably simpler to point out the essential

features; also the finite spline behaves likewise because of its localness.

For appli-ations, however, it is necessary to deal with the general

case.

Detailed derivations can be found in a standard text on splines

like (Ahlberg et al., 1967). Here, only the very necessary things will

be presented.

Let there be given a sequence of abscissas tXm 4 , m =1

M; m f(xm). An interpolating cubic spline is a twice continuouslyfm

differentiable function over the range [a,b] which consists of (M-l) cubic

polynomials, each of them defined on an interval [xi, xi+1] ,

~~~f (x(m)(x = )(x-Xm~ Z61

k=0
The coefficients [(m),m . .., M-1, can be found via the continuity

conditions for first or second order derivatives. This leads to a system

of M linear equations

Af" = Bf (2. 6-Za)

A is a strongly diagonally dominant tridiagonal symmetric matrix with

:ositive diagonal elements; it follows from well known theorems in

matrix algebra, that A is positive definite. The uniqueness of the spline

is guaranteed if, in addition to the function values, the second derivatives

are given at the end points a and b of the interval [a, b]. Since such

kind of boundary informations are hardly ever available, the most

natural choice is to assume them to be zero. This corresponds to a

linear behavior of the spline at the end points a and b of the interval.

The corresponding cubic spline is referred to as a "natural spline".

GSPP assumes vanishing Znd derivatives at the boundary points, and

therefore, calculates exclusively natural cubic splines.
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The solution of (2.6-2)

f" = A- t Bf, (Z.6-zb)

can be found very efficiently by a Gauss-Jordan elimination procedure

(Spath, 1973; p. 10 ff.). If the system has been solved, it is fairly

easy to find the coefficients am)), k = 0, ... , 3; m=1, ... ,M-:

(M)
a0  f

(M m,Afm 1

a() Ax (f" + Zf"
Ax 6 m m+I m

m
(in - ftI(Z. 6-3)

,(M) 1

a (M) (f" - f i )
6x m

m

with Ax :x -x and f :f -f cm m m m M+I m

In a similar way (2. 6- 2a, b) and (2.6-3) can be expressed in

terms of 1st derivatives, which will be used in the calculation of

bicubic spline coefficients.

2.6. Z The bicubic spline routine. Let a regular rectangular

grid consist of M.N gridpoints and let the function values at the grid

points be (f ), m=l, ... , M; n=l, ... , N. Then a bicubic spline

consists of (M-.l)(N-I) bicubic polynomials in x and y

3 3

f (m , n) a ' nX-X (2.6-4)

k=0 1=0

with coefficients (ak n  expressed by the product

A~ m n  ( aln) H T(h )F H(h) (2.6 -5a)

IX
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and the grid spacing matrices H(hx) and H(h ),
xy

i 0 -3/h z  2/h3

0 1 -2/h 1/h
H(h) = 1Z _/ 3 ,(2. 6-5b)

0 0 - 1/h I/h,

where h grid distance in x-directionx

hy = grid distance in y-direction

F is a matrLx with data information

fmn q n fm, n+i q m, n+1

p r r
F nmn Pm, n+I m, n+t 26-c

F f (Z.6-5c): m+s, n qm+t,n f m+j, n+s qm+j, n+t

p r pIrm+
o+t, n m+t,n Pm+t,n+1 m+I, n+j

where

f = function value at the gridpoint (m,n)

Pmn = first x-derivative at the gridpoint (m, n)
qmn first y-derivative at the gridpoint (nn)

r = second xy-derivative at the gridpoint (m,n).mn

The derivatives (pm , (qm , and (rmn at all gridpoints are

determined by continuity conditions of second order derivatives similar

to the one-dimensional case. A unique bicubic spline representation,

however requires, apart from all function values (f f at the grid

points, the following additional boundary informations:I ~Pi ~In 5 , n1, ... , N;
(2.6 -5d)

[qm, I (qm,N m ... , M;
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(r] , n-1, M; n-1, N.

mn

Since these boundary informations (derivatives) are hardly ever

available in practical applications, similarly as in the one-dimensional

case, assumptions have to be made concerning their values. The most
natural assumption is to assume vanishing second order derivatives along

the boundary normal. This is an implicite assumption relative to the

boundary data (Z.6-5d). The practical determination of the coefficients

runs then as follows:

I.) Solve the spline equations (Z.6-) for first order deriva-

tives as unknowns with data vectors [frnn )e=1,6.#, M

and vanishing 2nd derivatives at the boundary points,

D'f (x, yn)I x=x=D 'f(x, x=x 0 , for all "columns"

n=1, ... , N obtaining so all 1. derivatives in x-direction

P I  re=l, ..., M; n=l, ... , N.

2.) Interchange the role of x and y: Solve the spline equations

(Z.6-2) for first order derivatives as unknowns with data
vectors (fi , n= , ... , N and vanishing 2 nd derivatives

at the boundary points, Dyf(x y)l = D ~f(x 0,

y m y=Y1  y M, Y) Y YN
for all "rows" m=l, ... , M obtaining so all first derivatives

in y-direction (qm, m=l, ... M; n=l, "., No

3.) Replace "f" by "q" and solve according point (1) or, which
I is equivalent, replace "~f" by "Ir" and solve according point

(2). The result is all second order mixed derivatives

[r r , m=1, ... , M; n=l, o.., N

With these values obtained, the bicubic spline is completely defined.

(The coefficients (akl ) depend only on [fmn Pmn' qmn, r

ml, ... , M; n=l, ... , N and on the grid spacing h and h .)x y"
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Therefore, it is necessary to have this set of defining values, the

quadrupel (f, p, q, r) at each grid point, available in order to define
Mn

a spline uniquely. Generally speaking, also the grid distances h and

h can change with m, h = h (m), h can change with n, h = h (n).y xx y y y

However, GSPP always assumes h and h to be constant (they need
x y

not necessarily be equal). This simplifies computations quite consider-

ably: the grid information matrices become constant; therefore, it is

possible to perform all calculation normalized, with a constant grid

spacing in x and y-direction equal to 1. Of course, the calculated

derivatives have to be interpreted accordingly -- they refer to grid

spacing equal to l and have to be scaled by h and h later on in order
x y

to obtain real values. The gain is two-fold: firstly, all derivative

calculations (solutions of the spline equations) are highly stabilized, and

secondly, the calculation of the product (Z.6-5a) -- which, in GSPP, is

not formulated in terms of two matrix products but is programmed

explicitly -- gains in calculation speed because a number of divisions

(or multiplications)is avoided . This sounds trivial but is very essential

when the grid is extended and if a huge number of interpolations has

to be performed.

Z. 6.3 Interpolation/differentiation of splines. Interpolation

with cubic and bicubic splines is really trivial as soon as the defining

values are available -- function values and 1st, or Znd order deriva-

tives at the knots (Xm), m:l, ... , M in the one-dimensional case,

and the quadruple (f,p,q,r mn, m, ... , M; nl, ... , N in the

two-dimensional case. Therefore, an interpolation of a function value

at a point x (x, y) requires the following steps to be performed:

1) find the interval number m (grid element numbers m, n) to which

the pointx (x,y) belongs;

Z) calculate the cubic spline coefficients using (2.6-3) (bicubic

spline coefficients using (2.6-5)

7-'--- - -- - -- - i
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3) perform the product (2.6-1), for the cubic, (2.6-4) fcr

the bicubic spline.

Computation efficiency can be gained by performing the products

(2.6-1) and (2.6-4) not blindly, but by reducing the number of operations

involved to a minimum like

f f(x) = ao + R (a, + R (a z + _a3)), x xm (2.6-6a)

for the cubic spline, and

f(x) =a00 + - (ao, + 7 (a0z + 7 a0,
+ ((azo + - (al + 7 (a,, + 7 an)))

(2. 6-7 a)+ ((a 0 + - (al + - (azz + - a, )

+ x ka30 + (ag + (a3z + a 33 ))))), x-x, = YY

for the bicubic spline. (This arrangement reduces the number of multi.-

plications from originally at least 28 to 15 and keeps the number of

additions constant.) If the coefficients refer to grid spacing 1 (normal-

ized coefficients), then R = (x-xm)/h and y (y-yn)/h

Any derivative 05 3 of the cubic spline (2.6-1) can be

expressed by

f W k (i , 0 a 3; (2.6-8)

ka

however, it is more efficient to explicitly write down the derivatives:

f'(x) = a, + x (2az +3 .3a 3),

f"(x) = 2a z + 6a 3., (z.6-6b)

f III(x) 6 a3

Similarly, any derivative 0 5 t 3, 0 3 of the bicubic spline -

(2.6-4) can be expressed by
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3 3

A''~xy (x z Z6xt, YCI k 1

(2.6-9)

with the double-index a: = O i), l = + a,, 0 S a, O i 3.

This compressed expression, however, is far from optimal as far as

CPU-time saving is concerned. Therefore, all partial derivatives should

rather be used in the following forms (see also (SUnkel, 1980) ):

f (x,y) alo + 7 (al + 7 (a2 + 7 al3 )) (Z. 6-7b)x
+ x (2(azo + 7(a, + 7 (a2 + 7 a23)))

+ 3 (a3, + 7 (a3, +7 (a3 + 7 a 33 )))),

f (x, y) :aol + R(all+ R(aal + an))
y

+ 7 (2(aoz + R (a,? + F (aza + x a32)))

+ y '3 (a03 + 3 (a,13 + R (a 3 + x a33)))),

f (x, y) 2 2(azo + y (az, + y (a22 + 7 a23))

-Ix.3 + y (a3  + 7 + a33)))),

xy(x, y) all + y (Za,2 + y. 3al 3)

+ x (2(a, I + ( 2 + 7.3aZ3))

+ x'3(a3, + y (Za3? + y. 3a33))),

f (x,y) 2 (ao2 + x (a,2 + x (a.) + x a3 2 ))
yy

+ Y. 3 (a 03 + x (a 13 + x(a 3 + x a33 )))),

fXXX (x, y) 6(a30 + y (a 3, + y (a32 + y a33))),
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f (x, y) = Z(a + ya? y. 3 a23 )
xxy

+ x . 3(a 31 + y (Za32 + y" 3a33))),

f (x, y) = 2(a,, + x (Zaz + x. 3a3 )
xyy x ,3aZ

+ y, 3 (a 13 + x (2a 23 + x 3a 33))),

f (x,y) = 6(a03 +x (a13 + x (a3 + x a 33 ))),
yyy

f (x, y) = 6(a31 + y (Za32 + y. 3a33 )),

f (X,y) = 4(azz + y. 3aZ3 + x'3 (a 3, + y. 3a 33)),
xxyy

f (x, y) = 6 (a13 + x (aZ 3 + x 3a 3 3 ))

f () = 12 (a32 + yo 3a 3 3),

* myy 17

f (X, y) = 12 (a23 + x, 3a33),

fm y) 36 a33 .

GSPP is capable of providing plots of derivatives 0 1 , C 2.

2.7 Contour finding

Let the prediction of function values at a regular rectangular

grid be done and assume that the spline routines have generated the

quadruple (f,p,q, r n, m1, ... , M; n=l, ... , N of bicubic spline

defining values. In other words, let a bicubic spline surface be

given such that on each grid element Rr nJx m , xrn+ ; yn' Yn+t ] the

smooth interpolation function given by (2.6-4). The goal is to find

the contour f(x,y) = constant = c.

Consider just one single grid element R with the bicubic poly-
nn

nomial (2.6-4) as interpolating element. Then it is obvious that at

least one contour exists if the condition

min f(x, y) < c < max f(x, y)

(i , y)CR (x, y)E Rmn

is fulfilled. In the case of one-sided equality the contour degenerates
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to a point, in the caae of two-sided equality the bicubic element- is

flat and horizontal, all coefficients (a kl kl = 0, ... , 3 are zero

apart from a00 (which, naturally, can also vanish), and no contour
i exi st S.

The decision process of existence or non-existence of a contour

(or more contours) is only the beginning of the long procedure of actually

finding them. Remember that we have to find the solution(s) of the

equation

f(xy) a y = c = const., (.7-1)

k=0 1=0

I a slightly simplified form of (2.6-4). In one dimension this corresponds V

to the solution of

f(x) = +ao + ax + azx2 + a 3x
3  c,

which is nothing else but finding the zeros ( 3) of i
(aO-c) + asx + azx + a x3 3 0 (Z.7-Z)

with almost arbitrary coefficients. Even in such a simple case, a

simple solution usually does not exist. The approximation methods

used for the solution of above cubic equation essentially consist of

finding the intersection of the horizontal line fg(x) = c and a line

segment of (Z.7-2) which represents the behavior of this cubic poly-

nomial in the neighborhood of the zero being considered. In other words,

the zeros can be found by approximating the cubic polynomial (2.7-2) by

a continuous and piecewise linear function, and intersecting this approxi-

mation function with the line fl(x) = c. It is obvious that each line seg-

ment of the piecewise linear function has either 1 intersection or none

(Fig. 2.7. 1)

In view of these facts it should be clear that direct contour-

finding with the bicubic function (2.7-1) is hopeless. There is, however,

a way to overcome this problem, similar to that discussed above:
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f W)

f (x) ,1

Fig. 2.7.1 Intersection of f(x) with f, (x)

I:I

By approximating the bicubic function (2.7-1) by a number of simple

elements which allow for a simple contour-finding.

The simplest such approximation function is obviously a plane.

A plane either has 1 intersection with another (horizontal) plane or has

no intersection- moreover, the intersection is a straight line. A plane

is uniquely defined by 3 parameters which can be taken as the function

values at 3 not coinciding points. Therefore, one would conclude that

piecewise linear (flat) triangular elements are the obvious choice for the

approximation of any continuous two-dimensional function analogous to

the one-dimensional case.

A linear triangular element is defined by the equation

f(x,y) = bo + b x + bay (2.7-3)

and, intersected with the horizontal plane

- -- ___
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f (x, y) - C,

gives an intersection

y(x) = (c- b0 - bx) (2.7-4)

which is obviously the equation of a straight line. Since the element is

flat, only two boundary lines of the triangular element can have an

intersection with (Z.7-4) or no boundary line has an intersection. To

find these intersections is indeed very simple: first it is necessary to

check if

min f. < c < max fI

i 1, i = ,Z,3

where fi P i 1,2, 3 are the function values at the 3 corners of the

triangle; the second step consists in the actual calculation of the 2

intersection points. The straight line connecting these two intersection

points is part of a contour. The full contour is then the continuous

and piecewise linear line consisting of the above described line segments

(Fig. 2.7.2).

Fig. 2.7.2 Contours on piecewise linear triangular elements

_ _ _ . . . . .. . . . -•-•- mn nd .. . . .. . . . . . . . . . . . .. . . .. . . . . .
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This is in principle the contour-finding procedure frequently

used in connection with detailed digital terrain models: sampled terrain

heights and other kinds of structure informations like rivers, lakes,

roads, dams, artificial structures are taken into account, a dense

"triangulation is generated", and the terrain heights at the corner points

of the triangles are either known or are predicted. It should be

pointed out that all this sounds very simple, but is extremely complicated.
The enormous problem consists primarily of analyzing how the human

intellect "produces" an image on the basis of data and secondly, to

"translate" this stream of logical operations in a programming language.

We are not going to discuss this method in detail because GSPP

has been designed for another possible method of contour finding.

Recall that the bicubic polynomial (Z.7-1), as part of the bicubic

spline surface, is defined on a rectangle. Therefore it is quite natural

to approximate the surface not by flat triangular elements, but by simple

elements also defined on a rectangle. The simplest element defined on a

rectangle is a function with 4 parameters which can be determined from

the function values at the 4 corners of the rectangle. Such a function,

in general, is no plane anymore; it is a hyperbolic paraboloid (saddle

surface) with the equation

f(x,y) = bo + bix + bZy + b3xy (Z.7-5a)

this function is bilinear, which can be seen more easily in the equivalent

form

f(x, y) (co + ctx)(do + dry) (2.7-5b)

with cdwih codo -"bog

c1do  " 1,
cod, 1 b2,

c1d1  b3,

or in the form

n n m n n n - m u n i -.-" -m • .. . . .. .. ..... . . I
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1k1

f(x, y) b kix Y (z.7-5c)
k:O 1=0

with
boo = bo,

blo = bl,

bol = bz,

btt = b3.

Bilinear means that the function is linear along the coordinate lines

x = const, and along the coordinate lines y = const. In any other

direction the function, in general, not linear (Fig. 2. 7. 3).

This bilinear element plays a central role in contouring based

on rectangles and a thorough discussion is essential for an understand-

ing of the whole contouring logics. We will, therefore, investigate its

properties in detail.

Let us first introduce a new coordinate system (x',y') parallel

to the old system (x, y) with origin coordinates (x0 , yo) in order to

eliminate the linear terms in (Z.7-5a),

x = x' + xo, Y: Y' + Yo" (2.7-6)

Then the intersection between the bilinear element (2.7-5a) and a hori-

zontal plane fj(xy) = c = constant assumes the form

c = bo + bt(x' 4r xO) + bz(y' + yo) +,b 3 (xI + xo)(y' + Yo)

= (bo + blxo + bzy o + b3xoyo) + (b, + b3yo)x'

+ (bz + b3xo)y' + b3xIy' ; (Z.7-7)

the linear terms (x', y') vanish if b, + b3y o = 0 and b? + b 3x o = 0;

these conditions provide the coordinates of the origin of the new

coordinate system (xI, y')

• (2.7-8)
b 3 b3
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'4!

Figure 2.7.3: A bilinear element

I

With these values equation (2.7-7) takes on the simple form

1b bx'y, = - (c..bo + 1_1) , (2.7-9)b3 b3
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Since the right hand side of the equality sign is constant, the line of

intersection has the equation x'y' = constant. But this is exactly the

equation of a hyperbola with asymptotic lines parallel to the coordinate

lines (because x' = const. /y' and y' = const. /x'). Therefore, we know

also the axes of the hyperbola: they are mutually orthogonal and span

an angle of 450 with the coordinate lines. In order to prove this we

introduce a new coordinate system (xI y) rotated by an angle :

... ' = x cos a - y sin U

y' x sin 01 + y cos . (.7-10)

With this coordinate transformation, the product x'y' assumes the form

x'y' = (:R_ cos Ot sine + xy(cosZ sinZa)

( _2  ) sin2a + xy cosZo = const.

The above equation becomes purely quadratic if cos 2 a = 0 which corres-

pond s too of proving the statement made above. So we finally obtain
the equation of the contour

3c .-y = _ (c -b 0 + bl . (.7-11)b3 b 3

This purely quadratic expression is the mid-point equation of a hyperbola.

It refers to a coordinate system (x,y) which is shifted relative to the

original system (x, y) by (x0 , y0 ) having values (2.7-8), and rotated by an

angle of 450.  The axes of the hyperbola coincide with the new coordinate

axis (x = 0, y = 0) and span therefore the same angle of 450 with the

original system. The hyperbolas as) nptotes are parallel to the

original coordinate lines (Fig. 2.7.4).

After having pointed out all relevant facts concerning the line of

* intersection, we come back now to the bilinear element. The bilinear

element is linear along each coordinate line; therefore, it is also linear

along the 4 boundary lines of tLa rectangle. Each linear function can

be intersected at most once by another linear function, and, for the

same reason, can there be at most one contour intersection point en

, '"I

_ __
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axis axis

(asymptote) /' /

x

\\\\ //

Y=Yo (asymptote)

Figure 2.7.4 Contours of a bilinear element

each of the 4 boundary lines of the rectangle. Before we discuss this

maximum case we state that the other two possibilities are 2 intersection

points or no intersection at all. In the case of only two intersection

points it is clear that both points belong to one and the same hyperbola

(because the asymptotic lines are parallel to the original coordinate

lines), and the connection between the two points is clear. The way

of making the connection between intersection points is not so evident

(Schumaker, 1976, p. 249 ff). Is there a simple and unique answer to how



-63-

the 4 intersection points in Fig. Z.7.5 have to be connected?

P 4
P4I 1 pP

3I Pl~ I
PI

Figure Z. 7.5: Bilinear elements -- contour/boundary

intersection points

Yes, there is a simple answer (Su*nkel, 1977a). The clue is

that the asymptotic lines of the hyperbolas are parallel to the coordinate

lines. Therefore, the position of 1 out of the 4 intersection points

relative to the origin (x0, Y.) of the new coordinate system determines the

way of point connection uniquely: In Fig. 2.7.5 the point PI is

below the asymptotic line x = x0; therefore, it can only be connected

with Pz whose coordinate y is smaller than y0 ; since the hyperbolas

are symmetric relative to the origin, the connection of P 3 with P 4 is

automatically fixed. Consequently, the simple calculations of the origin

(2.7-8) provide sufficient information about the way of point connection

(Fig. Z.7.6).

ii
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'4 .

I

Iii

Pi

P1 P2

The coordinates of the hyperbolas origin are valuable also for

4 1

another reason: they tell if 4 intersection points are possible (2 hyper-

bolas) or if just 2 intersection points (1 hyperbola) exists within the

square; if the origin is located outside the square, then at most one

hyperbola exists, if it is located within the square, two hyperbolas are

possible. There is an exceptional case which should also be mentioned:

the case of hyperbolas degenerating into the asymptotic lines; this

haprens if the x-coordinates of one pair of points (and the y-coordinates

of the other pair of points) coincide -- such lines are known as saddle

lines (see Fig. 2.7.6).

All the considerations made above about the intersection curve(s)

and the way of intersection-point connection are simple but essential

for the logics of contour finding.

Let us go back to the coefficients (bk), k = 0, ... , 3, in

equation (2.7-5a). They can easily be determined as linear combinations
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of the function values at the 4 corners . the square:

bo = foo

b, = f 1o - foo
b2 = fol - f0 (2.7-12)

b3 = (fIt- 4)- (fo1 - foo)

with f = f(x = k, y = 1). Here it has been assumed that the square
k1

on which the particular bilinear element is defined, has unit length.

This saves a number of calculations (divisions or multiplications) in

GSPP.

Summarizing, the process of contour-finding for a bicubic spline

surface consists basically of the following steps:

1) Interpolate the bicubic spline at the grid points of a

rectangular array which is a proper subdivision of

the original grid on which the spline has been defined

(Fig. n.e7b7). The function approximating the bicubic

spline is defined by the array of function values at these

subgrid points. The function is continuous and con-

sists of bilinear elements, each defined on one individual

subgrid element. Store this approximating function.

2) Start with the lowest possible contour value and search

for a ,-ontour intersection point along the boundary

rectangle of the whole subgrid -- contours intersect-

ing the boundary are open (non-periodic) with respect

to the contouring area in consideration. Having found

the first intersection points, there are two alternatives

to find the next one in this element: either by first

comparing the contour value with the other 4 remaining

contour values, singling out the possible line(s) and

calculating the coordinates of the intersection point(s),

oA: to take advantage of the relation between the hyper-

bolas and their asymptotic lines. Since the origin coordinates

'I
i
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Figure 2-.7.7: Grid (4x5) and subgrid (16x21)

are necessary anyway for the decision of how many hyperbolas

are possible and for the point connection, a hybrid solu-

~tion has been chosen. This intersection point searching

continues like a domino from one element to the next -

' until the contour leaves one of the four boundaries.

~A certain integer array associated with the array of

bilinear elements "remembers" the position of all inter-

section points relative to the boundary rectangle of a

7i
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particular element, and "directs" the program part

which is responsible for the calculation of the contour inter-

section points. This is necessary in order to avoid a

multiple calculation (and plotting)of contours.

After all non-periodic contours (for a particular

contour value) have been found, the program searches

for periodic contours (contours which do not cross the

boundary).

3) Plotting of the contour. Repeat steps (Z) and (3) until

the contour value exceeds the maximum function value of
the surface.

These are the basic steps which are necessary to find contours

fo a bicubic spline surface. However, there are and/or can be a

number of secondary procedures involved which make the steps (2) and

(3) rather complicated. In the sequel, three intermediate procedures

are described which GSPP is capable of performing.

Z.8 Optional contour procedures

We start here with the most commonly used procedure, the

contour smoothing.

2.8. 1 Contour smoothing. Theoretically, a contour smoothing

would not be necessary if the hyperbolas of the last section (contours

of a bilinear element) could be tampled at a sufficiently high rate.

This, however, is relatively expensive in terms of CPU-time. There-

fore, it has been decided to take only 2 points of a single hyperbola

into account, its 2 intersection points with the boundary of the square on

which the bilinear element is defined. The actual (non-normalized)

size of the square (subgrid distance) is chosen as approximately Zmm

by GSPP and can be changed within certain bounds by the user. How-

ever, consecutive contour points will have a mutual distance of up to

approximately Vz * subgrid distance ( 3. 5 mm in this case). A

linear connection of these contour points might give a too rough picture. [
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Therefore, it is either necessary to decrease the subgrid distance

or to smooth the contours. GSPP will always smooth the contours

unless the smoothing is suppressed by the user. The interpolation

function used for the smooth representation of the contours is a

partitioned and overlapping cubic parameter spline.

A cubic parameter spline is a cubic spline whose coordinates

x and y depend on a parameter which is here taken to be an approxi-

mation of the arc lengths of the contour,

x = x(s)

y = y(s).

Therefore, both x = x(s) and y = y(s) are cubic splines depending on the

parameter s. In GSPP, the arc length is taken as the accumulated

length of the piecewise linear function determined by the originally

calculated contour points.
!' The number of points for a single contour may become quite

large (a couple of hundred); moreover, the points are by no means

equally spaced. These circumstances can cause instabilities in the

spline algorithms. In order to avoid this it has been decided to first

"clean-up" the crude vector of contour points which is to be understood

as an elimination of all contour points whose mutual distance is

smaller than some percentage of the subgrid distance (assumed to be

Z5% but can be changed by the user within some bounds). After this

clean-up process, the vector of contour points is subdivided into a

number of overlapping vectors (GSPP: 25 points/vector, 6 points overlapping).

The overlapping has been chosen in order to preserve the smooth transi-

tion from one part of the contour to the next part to such a degree that

it is not possible to detect the transition by visual means; a 6-point

overlapping fulfills this requirement; the number 25 has been chosen

for reasons of stability.

After the calculation of the spline parameters, further contour

points are interpolated such that the overall mutual distance of the
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contour points varies only between narrow bounds. Fig. 2.8. 1 gives a

'I comparison between smoothed and non-smoothed contours.

Figure 2.8. 1 Smoothd and
no n- smoo th ed

CL o_ _ _ I
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2.8.Z Contour mapping. Usually, the two-dimensional coordin-

ates x and y are interpreted as cartesian coordinates and the mapping

"data space-* image space" (contour plot) is assumed to be given by

X* C "X

y * c " y

where (x,y) are the coordinates of a data point, (x y*) are the

coordinates of the plotted point, and c is the constant scale factor.

However, especially in all earth sciences the coordinates are

not to be understood as cartesian coordinates but as, e.g., spherical

coordinates y, X, and there is the wish or need to choose a mapping

different from that in equation (2.8-1). For example, a Mercator

~projection

x cl in [tan + )]" sign (P)

y* ca(X->XO)

with
0,,X. = spherical coordinates (latitude, longitude),

X0 = longitude origin

cl, ca = scale factors in x and y- direction;

Another example, a linear transformation of the form

x* = cl (x cos C + y sina)

y* cz (-x sin + y cos 0)

with the constant azimuth C as rotation angle. Obviously, there is an

unlimited variety of possibilities for coordinate transformations

(mappings). If any mapping different from (2.8-1) is desired, the

user has to define this mapping by providing the corresponding sub-

routine and he has to inform GSPP that a mapping is requested. This

mapping has, naturally, to be done for all points of the contour;

actually, it is performed after the clean-up of the contour point

vector. Fig. 2.8.2 shows a Mercator projection of the contours in

Fig. Z.8. 1. ..... U
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Fig. 2.8.2 Mercator projection of the contours shown in Fig. 2.8.1

2.8.3 Contour l.abeling. By labeling of contours we under-

'] stand the plot of the contour value into an interval which is kept

!;free of the contour line. The contour has to have a sufficient length

t such that a contour value fits in an interval which is smaller than

tthe actual length of the contour. If a contour is too short, no label

(contour value) will appear. The direction of the label is designed to

~be identical with the tangent to the contour at the midpoint of the label.
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The length of the label depends on the actual contour value, the

number of decimal places to be plotted, and the sign of the contour

value, according to the equation

n+2+u(-x) for lxI : 10.0
w = coh. (2.8-2)

n+Z+ int(logo(Ixj)) + u(-x) for IxI> 10.0

with
w = label length,
h = symbol height,

c = ratio symbol length/symbol height

x = contour value,

n = number of decimal places to appear,

int = integer function

I i for x> 0
u(x) = unit step function, u(x) = f x : 0

If not defined explicitly by the user, the number of decimal

places is chosen such that at least 3 significant digits appear. If

the absolute contour value is greater than or equal to 1000, no decimal

digit and no decimal point will appear. If the contour value is zero,

only a "0" without decimal point and decimal digit will be plotted (see

Fig. 2.8. 1).

Moreover, labeled contours can be plotted with multiple line-

width (if the plotter is designed for such a purpose).

The labeled contour interval has to be an integer multiple of the

non-labeled contour interval ; the default value in GSPP is each

second contour labeled with double linewidth.

2.8,4 Contours within a window. Usually, the complete bicubic

spline surface from m=l, ... , M and n=l, ... , N will be contoured.

Sometimes, however, one is probably interested in only a part of it

in order to see more details when plotted in a larger scale or one
likes to have more contours than usual plotted in a particular area.

For such purposes GSPP offers the possibility to plot only a rectangular
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part of the whole surface, say the window mn =in, rn, fl and
n 0 , ., njo Fig s. 2. 8. 3 give an example of such a window

plot.

NN

6.00

Figure 2.8. 3: Contours within a grid window
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This feature, however, is limited in many respects: it allows

orly rectangular windows on full grid elements (from one grid point to

anothe. grid po. ,t). Furthermore, it is not possible to suppress the

contour drawing within a rectangular region. In order to overcome

all these deficiencies, a highly sophisticated routine has been developed

and incorporated into GSPP; it will be described in the following section.

2.8.5 Contour-free regions of arbitrary shape. Sometimes

there is the desire to plot the contours only within a predefined closed

region, or vice versa, to suppress the contour drawing within certain

regions. For example, it might be requested to plot a gravity anomaly

.. ,ap only for the state of Ohio or, a rather recent application,

to generate a wo:Tld geoid solely based on altimeter data and to plot

this geoid only over the oceans and greater lakes because of the lack of

data over the continents (e.g., Rapp, 1979). Before we describe

the procedure which is capable of doing this, let us mention that such a

statement is very simple to make -- its translF."on into a computer

language, however, is extraordinarily complicatek The reason is

primarily that such a region is, in general, not convt., nractically

arbitrary in shape, and last but by no means least, may consist of a

very huge number of boundary points. In order to give an idea: the

detailed world shore-outline data bank consists of some 80 000 points.

Moreover, there might be contour-regions within contour-free regions,

and so on -- this could be the case in the above mentioned altimeter

example: geoid plnt only over "water": ocean (continent (lake

(island (l~k4 istar.. )))). More technically, the procedure should

be able to h4ariC sequknces of subsets

A? A , ... An  (2.8-3)

such that contours are drawn only on

A_ - A4_k. k = 0, 1, n (Z.8-4a)

_ 2
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or only on its complement
~n

AI--, - Aak , k 1,2, * . (z. 8-4b)

(see Fig. 2.8.4 ). Sometimes it is even required that the contours

are drawn (or suppressed) on a union of mutually exclusive (disjoint)

sequences of subsets. In this case Ak and n depend on a parameter i

(see Fig. 2.8.4):
i .i ]

A0 D A1D..Di ,.. . (2.8-5)n.
j 1.

GSPP is capable of handling even this case.

Honestly speaking, the author himself had absolutely no reasonable

idea how to start when he got involved in this problem. It is clear that,

in order to plot contours only in certain regions, it is necessary to

a) find the intersection between the contours, and b) to know which

part of the contour has to be plotted and which one has to be deleted.

In order to find the intersections between a contour and all region

boundaries it is necessary to develop a stable algorithm which is capable

of finding the intersection between two straight lines, and to run this

algorithm for all possible line segments of the contour and all po zible

line segments of the boundaries. If the number of boundary points is

very small, this procedure will not be very expensive; however, if the

boundaries consist of 100 points and more, this method becomes

absolutely prohibitive in terms of computer time. How else should

one attack this problem? Since in nature almost everything is

optimized (very probably because of the long time of evolution), it came

to the author's mind to analyze the almost automatic human decision

process for the particular problem of suppressing the drawing of contours

within predefined regions, and to "translate" this process step by step

"I in the computer language FORTRAN IV. The analyzation of the decision

process was relatively simple, not so the translation into FORTRAN IV.
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Let us first analyze the process of contour suppressing in terms

of human action, the interplay between the memory (brain memory),

the optical sensor (eye), and the mechanical part of the pen movement

(drawing by hand): First of all we obtain from an external unit

(somebody) the surface information, generally in terms of function values

at grid points, together with the boundary outlines and the information in

which region the contours should be drawn (or in which region they should

be deleted). This corresponds to the information represented in Fig. 2.8.4

(+ surface information).

i+

II

+

Figure 2.8.4 Boundary outlines

+ ... contour region

- contour-free region

n nmmlumnmumnn na• n n nm uni
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1) The first step consists of a global "look" at the situation

in order to get an impression of where contours have to

be drawn. If no other mEans is available, the test-person

will assign a "YES" to all contour regions, a ''NO" or
*1 just nothing to all contour-free regions, and a '"?" to the

boundary zone which is neither YES nor NO, and "store"

this YES-?-NO pattern in his brain. Now we have the

following information available: the array of function

values at the grid points ( the surface), the rough pattern

of YES-?-NO entries, and the exact boundary outlines.

2) The next step is the decision where we should start search-

ing for contours. The YES-?-NO pattern is the guideline

for this decision. Obviously, one does not start amidst a

NO- group in order to find out, after the calculation of the

contour line element, that it was useless anyway because of

its location within the contour-free region. The test-person

would probably also not start to calculate and draw contours

amidst a YES- group -- this would speak against a systematic

solution of the problem. It would start rowwise (kr column-

wise) with a "?" element, an element from a boundary zone.

In other words, the test-person starts to calculate contours

in a "zone" along the boundaries.

3) He calculates the line element of the contour and has now

to intersect this line element with the boundary (or the

boundaries). For this purpose he needs to have the

"accurate" information about the boundary (boundaries) in

this small region. He does not need to know the whole

boundary information, but only a "close-up'' of a very

limited part.

4) He moves his eyes closer to this part, concentrates on only

two lines, the contour segment and- the small part of the
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boundary, and forgets for some time all other regional and

global information. He finds the intersection; now he has

to decide on the pen position, up or down. Since he "forgot"

in the meantime all global information, he recalls them

again by moving his eyes away from the picture in order to

get again the global impression of the YES-? -NO pattern.

This pattern, in turn, enables him to choose the correct

pen position, and secondly, to make him trace the contour

in the correct direction (the direction of pen down).

5) He lowers the pen at the point of intersection, calculates the

next contour element; if this happens to be in the'"?" region

he repeats steps (3) and (4); if it falls in the YES- region
i he continues drawing until he finds the next "1 ?"1 region.

The first pen-up/pen-down decision is sufficient for all further

ones because of the alternating character of the contour/

contour-free region sequence.

These 5 steps described above are in principle "translated" into

FORTRAN IV. In the sequel we present the essence of this translation.

1) As described in Chapter (2.7), an integer * Z array is

assigned to the array of bilinear elements. The same

array is used for storing the information whether a particular

element (here rectangle on which a bilinear function is defined)

happens to be located completely inside a contour region (YES),

completely inside a contour-free region (NO), or if the element

is crossed by one of the region boundaries.

The boundary information consists of the number of

boundaries, the information whether boundary i encloses

a contour - or contour free region (for all boundaries i),

the boundary coordinates and information if the boundary

coordinate seque-ce runs clockwise ur counter-clockwise.
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In the sequel all elements are marked by a negative

number (corresponding to the question mark It ?" above),

if at least one boundary line crosses the element. The

absolute value of this negative number serves at the same

time as counter of how many boundary points have been

found (or interpolated) within the element in consideration.

The interpolation of boundary points is necessary if their

mutual distance is, loosely speaking, too large relative

to the size of the element; the interpolation is linear, for

reasons of simplicity. As soon as the first boundary

has been completed (all boundaries need to be closed) and

the "border zone" has been marked, the region is filled
I up with fill Is(--- NO) if the region is to be contour-

free; the contour-regions bear a "0". After all regions

have been processed, a pattern of "", 10, "0", iti is
obtained. This pattern represents the global informatioi

of where contours have to be drawn and of where they

should be deleted. Fig. 2.8.5 shows such a pattern

associated with the boundary situation of Fig. 2.8.4.

In addition, all boundary points (primary and inter-

polated) which will be used to calculate contour -boundary
intersections are stored on an auxiliary vector. (Usually,

not all boundary points are needed, unless the boundaries

are completely inside the total rectangular plotting range; i
e.g. consider the case of the complete world shore-outline

data bank and a plot restricted to Europe; then probably

only a couple of thousand out of the total 80 000 boundary

data will be used.)

2) The next step is already a part of the actual contouring.

The array filled up with negative numbers (boundary zones),

zeros (contour regiors) and ones (contour-free regions) is
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checked, prior to the function value-contour value compari-

son; all elements filled up with "I" are branched; all

contour points are calculated and stored for successive

"0" elements.

3) As soon as the contour touches a negative valued element

(boundary zone), the program switches to a "close-up"

look for this particular area. The close-up region covers

only all boundary data within the element in consideration

plus all boundary data in the immediate neighborhood of

this element; This number of data is always very small

indeed (recall that one element has a maximum size of

3x3 rn-n). Al this point we do not go into detail, this

would be a little bit too technical. The whole close-up

look consists in a series of logical operations involving

a tree of pointer vectors; the only calculations are

integer additions -- therefore, this procedure is extremely

efficient and takes very little computer time.

4) Havi; .ssembled all local boundary points, the program

continues with the actual calculation of intersections which

is performed in a stable subroutine. Such a line inter-

section subroutine was available to the author in form

of an elegant flowchart (Neubauer, 1978). The subroutine

following this flowchart was programmed. If no intersection

has been found, the program continues and branches to the

next element. If one intersection has been found, there

is the problem of deciding whether at this particular point

the pen has to be raised or lowered. This decision is

enabled by a global information in terms of a logical vector,

assigned to the boundaries, which provides information about

the region behavior in a direction orthogonal to the boundary

(contour or contour-free); e.g., in Fig. 2.8.6 the points P1
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Pz are contour points, #37, ... , #42 are boundarypoints

of the boundary B3 ; they represent, for this particular

element, the "close-up" ; (37, ... , 42) are only apart

of the boundary B3. The global information consists in

the knowledge of which side of the boundary B3 is contour-

free; then it is clear that at S the pen has to be lowered

and the connection S-P z has to be plotted. The part P1 -S

of the contour will be deleted.

42
/

boundary B3

>40 ,,l P contour

Pt

37

Fig. 2.8.6 Close-up contour/simple boundary

The case of a single intersection point per element

is relatively easy to handle. Very detailed and rough

boundaries, however, may cause more than one inter-

section points. Moreover, the intersections may even

refer to different boundaries. In such a case the close-up,

the retrieval of the logical information associated with

each boundary, the calculation of all intersection points

and the pen position logics are much more complicated.
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- boundary B-
117 77 7 2 contour

Sboundary B3

[i ~~ 79\ 12

121

Fig. 2.8.7 Close-up contour/complicated boundary

E.g.: In Figure 2.8.7 the points P1 and PZ are

contour points as before. But now there are two boundaries

involved, B? and B3. The close-up of Ba is identical with

B2 -- it is a closed boundary within a single element con-

sisting of the points # 76, ... , #80 (the points #76 and

# 80 are identical because the boundary is closed). The

close-up of B3, however, shows only a part of B3 -- the

points #116, ... , #125. Altogether, 13 boundary line

elements are to be checked for an intersection with the

contour; 6 intersection points S, ... , S6 have been found.

Let us assume that boundary Bz encloses a contour region;

clearly, the region to the right hand side of boundary B3

has to be also a contour region because of the alternating
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behavior of such regions. Let us now intersect all boundary

line elements with the line P, P2 , starting with boundary

B2 in increasing order. Then it can be seen immediately

that the sequence of intersection points Si) , i-1, ... , 6

is more or less arbitrarily distributed between P, P2 (S5, S4 ,

S3, S1, S21 S6 ). In order to make the pen position decision

it is necessary to know just one intersection point together

with the boundary logics; all other pen positions follow

from the alternating behavior. This alternating continuation,

however, is only possible if the actual intersection point

sequence is known. This can be accomplished by first

transforming the intersection point coordinates into a new

coordinate system whose origin is, in principle, arbitrary

and whose x-axis is parallel to the line PI Pz, and then re-

ordering the intersection points according to increasing

x-coordinates. The first operation is just a rotation of the

original coordinate system, the second operation is not so

trivial -- it involves a sorting algorithm. GSPP uses an

algorithm written by P. Meissl which has been adapted for

this particular problem. In the case discussed above and

graphically shown in Fig. 2.8.7, the intersection point SS

belonging to the boundary B3 would have the smallest trans-

formed x-coordinate among all other intersection points.

This point will also be taken for the pen-position decision

process: From the global information it is known that the

region to the right hand side of the boundary B3 is a contour

zq('oz; consequently, the segment PIS, has to be plotted,

S, S' delted, SA 83 plotted ... and so on. This completes step (4),

5) In. th- sequel the next element will be checked. If it has a

value "'0" assigned, the contouring can continue without the

netd of close-up's and intersection calculations; the same

II
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is true for values "1" -- in this case the program can "jump"

from one element to the next until it finds all elements

with a negative value in which case steps (3) and (4) have

to be repeated.

If smooth contours are requested, the program has to "remember"

all intersection points including at least the pen position at 1 inter-

section point. The parts of the contour which have to be plotted are

then smoothed along the procedure described in section 2.8. 1. The

following Figure Z.8.8 serves as an illustration. Figure 2.8.9

shows that even for regions with very complicated boundaries the

procedure works absolutely correct and gives total resolution.

Z.8.6 Region boundary plot . Besides the suppressing of the

contour plot within certain regions, there is also a routine built in which

plots the actual boundaries. There is an option to plot some of them;

there is the option to assign to each boundary a certain linewidth.

In any case the boundary lines will be clipped off at the border of the

rectangular plotting domain. The boundary points will be connected

linearly throughout.

The clipping process has been designed in the following manner:

assume the rectangular plotting domain R to be described by the coordin-

ates [x0,x 1 , Y, Y1 1]. If a boundary line happens to be completely inside

the rectangle R, it will be plotted (after an optional mapping) immediately.

If a boundary line happens to be completely outside the rectangle R (all

x-coordinates <x 0 or all x-coordinates > xj and/or all y-coordinates< yo

or all y-coordinates > y1 ), the program skips this boundary and continues

with the next one. If none of the above conditions is true, the boundary

either crosses the border of the rectangle R or it is still completely

outside R. The same is true for all line segments of the boundary.

The following number pattern is assigned to the nine rectangular

regions (1 closed, 8 open) generated by the boundary lines of the

plotting rectangle and its infinite continuations:
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Figure 2. 8.8: Contours, boundaries, contour suppressing (simple boundaries)
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Figure 2.8.9: Contours and complicated region boundaries
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One of these values is assigned to the boundary points according to

its position. Then it can be immediately verified that a line segment

is definitely completely outside R if the number, which results from

an addition of the codes of the two line segment points, contains at

least one "Z"; if it does not, it may be completely outside but might

also be partly inside R, and therefore, intersect the boundary rectangle.

If the sum is zero, it is completely inside R. E.g.:

P1 is in the region 1010, P, in 0011; the code sum

is 102 -- therefore, the line pp, is completely outside

R. If Pz is in 0101, then the code sum is 1111 --

therefore, the line ppzcould cross the boundary of R.

If the line segment code contains a "Z", the line segment will

be deleted; if it contains only zeros, it will be plotted; if it contains
at least one "III but no "12", the program finds the point(s) of inter-

section with the help of a line intersection algorithm described in

(Neubauer, 1978). If a mapping is defined and requested, all boundary

points (and intersection points) will be mapped; their connection will

always be linear regardless of the mapping.

Z.8.7 Plot of horizontal and vertical axes. The axis routine

will be described in detail in Chapter 5 of Part B. Here we mention that

a couple of axis options are available for a contour plot.
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Any axis plot can be suppressed; the axis can be obtained on

the left hand side and on the bottom of the contour plot; the axis can,

in addition, be obtained on the right hand side and on the top of the

contour plot. The axis itself consists of a straight line (which can

also be suppressed), tick marks and scale numbers. The tick mark

interval, the tick mark length and the tick mark direction can, within

certain bounds, be chosen by the user. If the user does not define

a tick mark interval, it is taken as the grid interval (for the surface

representation). The scale numbers can be plotted in 4 different

directions (k* IT/Z , k = 0, ... , 3); the symbol heights and the

number of decimal places can be defined by the user, otherwise default

Vvalues will be assigned (e.g., such that at least 3 significant digits

are plotted). A scale number will always be centered with respect

to its corresponding tick mark, where the actual Length of a scale

number is determined by equation (2. 8. 2). If the sequence of scale

numbers is too dense (such that overlapping would occur), certain

scale numbers will be deleted. In addition can the distance between

the tick marks and scale numbers be chosen by the user (within

certain bounds). Non-labeled tick marks will be 40% shorter than

labeled ones. No axis will be plotted if a contour mapping is invol, ed.

2.8.8 Plot of a grid superimposed on the contour plot. In

order to make graphical interpolations c nction values between tne

plotted contours easier, a grid plotting routine has been included in

GSPP. The following grid patterns are available (Fig. Z.8. 10):

full one, dashed line with arbitrary dash length and interval between

dashes, and a plot of open crosses at the grid points. The grid

distance is always identical with the tick mark interval. If a grid plot

has been requested and no grid parameters have been defined, a full

line grid will be plotted. No grid will be plotted if a contour mapping

is involved. Further details about a grid plot can be found in

Chapter 6 of Part B.
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Z.8.9 Plot of data superimposed on the contour plot.

Especially when a surface is derived from a set of homogeneous data

(noisy or not), it is often of interest to plot the data with the contours

as background; this enables the user to check the goodness of surface

fit relative to the data. But also a plot of the data point locations and

contours might be quite useful if one wants to see how the prediction

works in data-free areas or in areas with poor data coverage. In

order to satisfy all needs, GSPP offers the following 3 options: only

data position symbol plot, data position symbol plot and data number

plot, data position symbol plot and data number and data value plot.

The position symbol can be chosen among all symbols available
(differs from one plotting software package to the other) -- some of

them (0, ... , 13 for IBM software) give centered symbols, some of

them dont. The data number and the data value will always be

symmetrically located relative to the data position, the data number

above the data position, the data value below the data position. The

symbol height can, within a certain bound, be selected by the user;

the same is true for the number of decimal digits for a data value

plot. In any case, the symbol height of the data number will be half

the symbol height of the data value; this- is to distinguish them more

ea sily.

Besides the data plot there is also the possibility to plot the

predicted data in the same way as described above (plot the grid point

locations and predicted value at the grid points).

If a mapping is involved, the data coordinates will be mapped

in the same way as the contour point coordinates. In any case a data

point outside the rectangular plotting domain will never be plotted.

Figure 2.8.12 illustrates a data plot superimposed on a contour plot.

ICI
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horizontal and vertical label plots (a line is to be understood as a

maximum of 80 characters = information stored on one punched card).

The height and line width of the symbols can be chosen by the user within

certain bounds.

The title plot routine itself is intelligent. It offers the title to

be plotted in the following four ways: same as on the input cards

(default), left justified, centered, right justified regardless of how

the title information was actually punched. If the title length exceeds

the actual length of the contour plot, the symbol size will be reduced.

If the reduced symbol height happens to be smaller than the allowed

lower limit, the lower limit will be chosen and the title will start

on the left side regardless of the requested mcde. The symbol size

will also be reduced automatically when the total title height exceeds

upper limits, fixed by GSPP. The title will always be plotted above

the contour map; its position, relative to the upper left corner point

of the rectangular plotting domain, can be chosen by the user -- if not,

default values will be assigned.

Two single line labels, one along the horizontal, one along the

vertical axis can also be plotted. As long as the label length does not

exceed the corresponding length of the contour plot, the label will be

centered relative to the contour plot. If it exceeds this length, the

symbol height will be reduced automatically, but not below a minimum

height defined in GSPP. If the label length, with minimum symbol
height, is still bigger than the corresponding length of the contour

plot, it will no longer be centered; ir stead, it will be left-justified.

Usually, the labels will be plotted along the left vertical and along

the lower horizontal axis; however, when axes are to be plotted all

around, also labels will be plotted all around. In this case the title will

also be shifted automatically in order to avoid a possible overlapping.

No title and no labels will be plotted if a contour mapping is requested.
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Further information about the title routine can be found in

Chapter 7 of Part B.

GSPP - CONTOUR PLOT TEST'

DEPT. OF GEODETIC SCIENCE,
THE OHIO1 STATE UNIVERSITY,
SEPTEMBER 1979

32.5-

30.

25.0 -10

22.5

C=) 20.0

I17.5

15.0

12.5 -
5

7.5

10.0

7.5 12.5 17.5 22.5 27.5 32.5 37.5 4~2.5

LONG ITUD E

Figure 2.8. 13: Contour, title, and label plot
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Z.8. 11 Contours of surface derivatives. The contouring part j
of GSPP has been designed primarily for a contour plot of the surface

itself. The surface is defined as a bicubic spline function which is

6 determined by function values at the grid points of a regular rectangu-

lar grid. For the contouring it is of no concern whether the grid _

values were known in advance or if they were predicted on the basis

of other, probably irregularly distributed inhomogeneous data, or if

they are function values derived from a least-squares regression

polynomial. All of them represent a surface which is interpreted as

a bicubic spline function.

Apart from surface contours, GSPP also offers contours of

surface derivatives up to and including a second derivative in both

coordinate directions. Therefore, contour plots of the following surface

derivatives can be requested from GSPP:

Dx f , D f,

Dxxf, Dxyf, DY f

Dxxy xyyf,

D f.
xxyy

The derivatives are calculated according to the set of equations (Z.6-7b),

which are derivatives of a bicubic polynomial. Since a bicubic poly-

nornial is twice continuously differentiable with respect to both independent

variables, the highest derivative offered, D f, is still a continuous
xxyy

function; it is a continuous and piecewise bilinear function and

therefore, a hyperbolic paraboloid (cf. Section 2.7). All lower order

derivatives will be functions of higher order, and therefore, smoother.

The following Figures Z.8.14(a, b, c) show a contour plot of

a surface, its first derivative in x-direction and its highest allowed

derivative D f. From the D f plot one can see very clearly the

contour's tendency to run in directions along the asymptotic lines of

7 - ------ -
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Figure 2.8.14a: Surface contours
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the hyperbolas, which are parallel to the coordinate lines, and along

the axes of the hyperbolas which span an angle of 45 and 135 ° ,

respectively, with the coordinate lines. These features are particularly

pronounced in Fig. 2.8. 14c because of the big size of the grid ele-

ments used (2x2 cm). This happens always when bilinear elements

are contoured. Since the bicubic elements are approximated by

bilinear elements, the same is true even in the contouring of surfaces.

However, the size of the subgrid is kept so small that the effect cannot

be seen anymore.

3. PROFILES

The term "profile" is usually thought of as a curve which results

from an intersection between a surface and a vertical plane. Here we

understand by profile a curve which can, but needs not necessarily be,

a curve of intersection in the usual sense. If a curve is defined by

a vector of pairs (x, y) with yi = y(xi) function values at x i , we

speak about an "explicitly defined" profile. If a profile is defined by

a surface (or data which are to represent a surface) together with

profile start and end point, we speak about an "implicitly defined"

profile. If more than one explicitly defined profile is to be plotted

in the same frame, we will speak about a "multiple profile".

GSPP can handle these three types of profiles with a ntmnber

of options and additional features like profiles of surface derivatives,

profile derivatives, profile information, and many others, fully auto-

matically. The following chapters describe these features in detail.

L
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3. 1 Explicitly defined profiles

As already stated in the foregoing introduction, an explicitly

defined profile is thought of as a curve which is sampled by a vector

of increasing arguments (x.), i = 1, ... , I together with a vector1

of function values Lyl, i = 1, ... , I. Of course, there is a number

of ways to connect these sampled curve points. One could think of

a polynomial interpolation or least-squares interpolation, etc. GSPP

essentially offers three kinds: a simple sample point plot, a piecewise

linear interpolation, and a cubic spline interpolation.

Profile derivatives can be requested up to the second order;

derivatives will be derived from a cubic spline representation of the

profile. The corresponding routines have been described in Sections

Z.6.1 and 2.6.3. As far as the spectral content of the spline

representation is concerned, the reader may consult Section 2. 5. 1.

The actual plot of the profile is performed within a window in

x- and, y-direction ( argument window and function value window). If

a window has been defined by the user, the curve will be clipped off

when it leaves the window. The clipping algorithm is essentially identical

with the one described in Section 2.8.6. If no window has been

defined, the minima and maxima of the (x. I and (y ] vectors are

assumed to coincide with the bounds of the window.

3, 1. 1 Optional profile procedures. The profile interpolation

can be done piecewise linearly or by an interpolating cubic spline.

For reasons of stability, the spline is calculated piecewise and over-

lapping if the number of data points is too large (see Section 2.8. 1).

If no interpolation is requested, the profile points will be

marked by a centered symbol which the user can choose.

The plot of horizontal and vertical axes is identical to that one

described in Section 2.8.7 with the exception that no horizontal axis

can be plotted above the profile plot.

,I
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Analogous to the superimposed grid in the contour plot, small

crosses can be plotted at the intersections of grid lines (horizontal

and vertical lines at tick mark intervals). These crosses will only

be plotted below the profile. In addition, there is the option to

draw a horizontal "zero-line" whenever the plotting window for function

values contains the zero point.

Title and label plots are also identical to those described

in Section 2. 8. 10.

As far as the plot of profile derivatives is concerned, there

is the option to plot the first or the second derivative. Since the

derivatives are taken from a cubic spline representation, the second

derivative will still be continuous -- it is a piecewise linear function.

The following Figures 3.1.1 (ab, c) serve as illustration examples.

IPBOFILE ODEiONSIRATION PLOT US1Nd

I GSPP
H. SUENKEL

OSU. APRIL 1979

1
6.00 6.00

5.50 5.50

Figure 3. 1. Ia:
5.00 - -S.00

Automatic profile

'.50 4 S.5) plot plus title and

0 labels; profile
~4.00 4.00

.= smoothing

3.50 3.50

3.00 3.00

2.50 2.50

2.00 2.00

-10.0 0.0 10.0 20.0 30.0

ARGUMENT
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Figure 3. 1. 1b: Profile -j
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3.2 Multiple profiles i

In the case that one or more profiles have to be compared with

each other, it is advantageous to plot all of them in the same frame.

In that case there is one natural restriction: the plotting window for

all profiles have to be identical and to be known before the first

profile is plotted. If no such plotting window has been defined, GSPP

assumes the minima and maxima of the first (x.3 and (y,] vectors to

represent the window. However, in this case an unwanted clipping of

further profiles (in the same frame) occurs whenever it exceeds the

x- and y- minima/maxima of the first profile.

In order to simplify the identification of the different profiles,

two additional features (relative to the single profile plot) have been
built in: the profiles can be marked by centered symbols, each pro-

file by a different one; the number of symbols relative to the number

of profile data points can be selected by the user. Furthermore, there

will be a legend plotted at the right end of the profile which consists

of a list of symbol-input sequence identifications. The symbol plot

along the profiles and the corresponding identification plot can be

suppressed if so desired. Figures 3. 2. 1 a, b show multiple profile

plots without and with symbol suppressing.

The linewidth can be changed from profile to profile. Also

the derivative can be changed from profile to profile.

All other optional procedures like axes plots, title and label

plots, etc., are identical to the single profile case.

3.3 Implicitly defined profiles

A profile derived from a surface is herein called an implicitly

defined profile. The surface is assumed to be a bicubic spline surface

defined on a regular rectangular grid. If the data are not regularly

distributed, the spline surface will be predicted first. Of course, this

would not be necessary if only a single profile is calculated; usually
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one needs a number of them and this is why we have decided to

predict the whole surface. The prediction processes are identical

with the ones described in Section 2. 2, the spline representation is

describqd in Section 2.4. 2. The other essential information is the

start- and end- point coordinates of the proille in consideration.

The profile needs not necessarily be a surface profile --

it can be a profile of any derivative of the surface

,4; cv, q 2 = + (3.3-1)bx~l y(

or also a profile of

yf(x, y) (3.32)

with ds the line element of the straight line connecting start- and endpoint

of the profile. All derivatives (3.3-1) are discussed in Section 2.6.3;

the derivatives (3.3-2) are simply the projection of the surface gradient

onto the unit vector e with direction PI-P (PI... start point, Pz...
T

endpoint), e = (cos A, sin A)

T= f . e = f xcos A+ fy sin A, (3.3-3)

and for the second order derivative we obcain

Ts eFe (3.3-4)

with the second order tensor

F af azf
aZf '2f

thn (

then(3.34) hs th for
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Is : " cosz A + Zfycos A sin A + f sinZA (3.3-4)j

'cc xy yy

Since the bicubic spline is twice continuously differentiable with respect

to x and y, the derivative bf/ s is continuous and has even a continuous

derivative; Vzf/ sz is only continuous.

The actual calculation of the profile is done pointwise along

the line PI-P? with a sampling rate of 2 points/mm; the profile is
then a linear connection of all profile points.

3.3.1 Implicit profile procedures. There are a couple of
features which .re only connected with the implicit profile plots. First

of all, the request for a smooth profile point interpolation will, be

ignored because the function itself is already smooth and the profile

point sampling rate is sufficiently high; therefore, a smoothing would
show up no difference to the linear point connection.

Since GSPP is capable of calculating and plotting 100 different

profiles by just a single call, it is absolutely necessary to identify

the different profiles. This is done automatically by a start- and

endpoint message which appears at the bottom of the profile (see F igs.

3.3, 1 a, b). This message will always appear and will be
centered unless its length exceeds the profile length even with minimal

symbol height -- in this case it will be plotted left justified.

If the coordinates of the start- and/or endpoint are tuch that

the profile happens to be outside the actual surface domain by 107

(this is the rectangular region on which the bicubic spline surface is
i defined), the plot will not be executed for this particular profile and

an informative message will be edited on the line printer (or any other

selected output unit).

Another difference br the explicit profile plots is the scaling

of the horizontal axis. There are essentially two kinds of scaling

offered by GSPP: a) the scaling is done according to the actual
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distance PI-P with a tick mark interval which can be either chosen

by the user or can be determined automatically;

b) a value 1.0 is assigned to the total length Pj-P2 and the scaling is

done accordingly.

A last difference is the grid plot: recall that a rectangular

plotting window can be selected in the contour plot (see Section 2.8.4).

When such a window has been defined and the profile runs within the

window, crosses will be plotted at the intersections of grid lines

(horizontal and vertical lines at tick mark interval. At the point

where the profile crosses a window, a vertical bar will be plotted

with the same linewidth as the profile itself; outside the window but

inside the surface domain tiny crosses will be plotted instead of

normal size crosses in order to indicate that this part of the profile

runs within an area for which no contour plot has been performed.
No profile and no crosses will be plotted if the profile leaves the

suxface domain up to the above mentioned 10% limit. Crosses will

only be plotted below the profile. The following Figures 3. 31( a, b, c)

illustrate different kinds of profiles.

4. THREE-DIMENSIONAL SURFACE REPRESENTATIONS 4
A 3-D representation of a surface is, in this context, to be

understood as a projection of a two-dimensional surface which i9

embedded in a three-dimensional Euclidean space, onto a plane. The

plane can be arbitrarily oriented in space. The surface can be given

either explicitly by function values at the grid points of -a regular

rectangular grid or by irregularly distributed data in which case a

prediction algorithm (Section 2.2) takes care of the prediction of

function values at all the grid points. Again, the surface is considered

to be a bicubic spline surface defined by the function values at the

grid points (see Section 2.6.2). The bicubic spline surface is then

approximated by small bilinear elements; the function values at the
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Figure 3. 3. ic: Profile of the surface derivative in profile direction.

subgrid points (the grid on which the bilinear elements are defined)

are interpolated spline-surface values. Up to this step the 3-D pro-

cedure does not differ from the contouring described in Chapter 2.

In the contouring procedure, these bilinear elements have to be

intersected with a number of horizontal planes; in 3-D representations

the bilinear elements are projected onto a plane with arbitrary

orientation in 3-D space.

4.1 The projection

In principle, one could think of any kind of projection of the

surface onto the plane. GSPP assumes that thi projection is an

axonometric projection, where the center of projection is located at

infinity. Consequently, two parallels will remain parallel after the

projection. (The projection equations used in GSPP could easily
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be changed; therefore, it is, in principle, possible to obtain two

perspective projections from two different centers of projection

plotted in two complementary colors [red and green], which, viewed

with anaglyph glasses, give a three-dimensional impression of the

surface.)

The axonometric projection used in GSPP is defined in the

following way: Assume the surface z = z(x, y) to be defined on a

rectangular domain D, with the lower left point of the rectangle

coinc-ding with the origin (x=O, y=O), and the sides of the rectangle

parallel to the coordinate lines. Let a plane pass through this origin.

The orientation of the plane is defined by two angles, the longitude X

and the co-latitude 9 in the following way: a coordinate system

(x, y, z) is associated with the plane with x =x, y = y, z = z if

X= 0 and 8 = 0. Let now the surface be fixed and let the plane rotate

around the z-axis by the angle X in the positive direction (looked upon

from the origin, this is a clockwise rotation; looked upon from a

point above the surface, this is a counter-clockwise rotation). The

rotated coordinate system will be called (x',y', z')- system. Any point

Pwith coordinates (x,y, z) will have coordinates

y' = R y

with

Fcos sin X 0

R 3  I=sin X cos X 0

L 0 0 i

The second rotation will be performed around the x'-axis by an angle 9

in the positive direction (as defined above). The so obtained coordinate

system is called (x, y, z)-. system. In order to be clear, after the

transformation ,the two planes z=O and z= 0 span an angle 9 with each

i
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other. Any point P with coordinates (x, y, z) will, therefore, have

coordinates()()
SY = RtR3 Y

z

with ((
1l 0 0

R = 0 cos e sin e

L 0 -sin9 cos e

and written explicitly

x = x cosX + y sin t
y = -xcos 9 sin X + ycos8cosX + z sin$ (4.1-1)

z x sin 8 sin - y sin cos X + z cos .

The next step is the projection of the point P, from the center of

projection on the z-axis at infinity, onto the (x, y) -plane, which gives

the Cartesian coordinates of the image point P1 of P,( (x)
P( : (4.1-z)

y*

with

P 0 1 O0

Combining (4. 1-1) and (4. 1-2), replacing the co-latitude 9 by the latitude

= 90 - , llowing a coordinate shift in the (x*, y*)- system and scale

factors ct for (x, y) and cz for z we obtain the final projection equations
I-
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x*= X0 + (x cosX + ysin )c
, , (4. 1-3)

Y YO + (-x sin P sin X + y sin CP cos X) c + z cos p c? (1

Another interpretation of (4. 1-3), apart from the shift (x, yo ) and 4
the scale factors, is the following: The surface domain is a rectangle

in the equatorial plane with the x-axis through the origin and with

orientation angles y= 0 and X = 900 ; the y-axis passes also through

the origin with orientation angles p = 0 and , = 1800; then the sur-

face is, according to equation (4. 1-3), looked upon from a point at

infinity with coordinates Yp and X on the unit sphere.

4.2- Scale and shift

In a 3-D plot the user usually faces the difficulty of reducing

the coordinates x,y and the corresponding function values z such that

the figure "looks nice". Moreover, there is the problem of getting the

plot on a particular place of the plotting sheet. This would make a

number of decisions and calculations necessary if the data are already

regularly distributed on the rectangular grid and if they are known to

the user. He would first have to find the minimum and maximum of

the function values, then make the necessary projections in order to

find out the plotted size of the surface and so forth. If the data are

irregularly distributed, probably heterogeneous and noisy, such a

decision usually becomes a pure guess. GSPP is smart enough to do

this job if the user wants it to be done, moreover, he can still make

all or part of his decisions -- GSPP will accept them if they are

consistent and reasonble, and will reject them and replace them by

reasonable ones if they were unreasonable.

Let us briefly describe how GSPP finds scales and shift parameters:

The scale factor c, is determined such that a Z-D plot would have an

across the plot sheet extension of 10 cm. Since an axonometric pro- -
jection reduces lengths (or keeps it constant), a square of 10 x 10 cm .
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never exceeds an along or acioss maximum of ZO cm. The next

step consists in the calculation of the minima and maxima of the surface

function values. These extreme values are projected using a simpli-

fied form of (4. 1-3) and the scale factor cz for the function values is

determined such that the projected difference of these extrema is

7.5 cm. If the values (0, 0) are assigned to the direction of view

(X,cp ), GSPP will interpret them as "no input" values and will assign

default values X = .60°, %0 300 which usually gives a nice view of the

surface. In order to find the actual along and across (the plot sheet)

extensions, it is necessary to find the projected coordinates of the

four corner points of the rectangle with minimal and maximal function

values assigned to them. This gives obviously only upper bounds of

the 3-D plot size which are then used to find the appropriate shift

parameters (x* , y* ). (The determination of the exact extension

across the plot sheet would make the projection of all surface points

necessary. This is a rather time-consuming task and should, therefore,

be avoided.)

4.3 The 3. D plot

As soon as the bicubic spline sirface is available, a piecewise

bilinear approximation will be calculated by a simple interpolation pro-

cedure. The size of the bilinear elements can either be chosen by the

user or, otherwise, will be selected by GSPP. The interpolation is

done first row wise, then columnwise: the first along profile, a con-

tinuous and piecewise linear function is interpolated from the surface,

is projected using (4. 1-3) and plotted; then the next parallel profile is

interpolated and projected. This profile and further profiles have to

pass a hidden line algorithm which determines the actual visibility of

the profile; those profiles or portions of profiles which are hidden by

previous profiles are masked and will not be plotted. The hidden line

* algorithm used in GSPP is a modified version of that one described in
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(Watkins, 1973). In this way all horizontal and vertical profiles of

the surface are treated. After completion a frame is plotted which

also passes the hidden line algorithm. The frame plot can be suppressed.

4.4 Additional and optional procedures

In any case , information about the viewing direction will be

plotted in the lower left corner of the plot. This information gives the

used values of the longitude and latitude of the direction of view in

degrees and minutes.

A rectangle will be drawn around the entire plot; it can

be suppressed.

At the top a title consisting of no more than 10 title lines can

be plotted in the same way as for the contour and profile plots (with

options: left justified, centered, right justified, or as on the input cards).

The following Figures 4.4. l(a, b) show a contour plot and a corresponding

3-dimensional view.

15.0-
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I PART B4

1 ISOLATED PROBLEMS
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It could have been anticipated at the beginning of this report

(and actually shown in PART A) that contouring, profile iinding and

drawing, and- the generation of a 3-D plot consists of many pro-

cedures, The user of GSPP need not be confronted with the solution

of these problems; however, many of these procedures (or sub-

routines) can be used in an isolated form and might be quite useful

as such or as parts of other algorithms. Therefore, this section of

the report discusses all the procedures and algorithms which are

independent but integrated parts of GSPP.

1. Organization of data

As part of the contouring algorithm, the data sorting and

retrieving procedure was briefly described in Section Z.1 of part A. By data

organization we understand an algorithm which generates pointer
vectors based on the two-dimensional distribution of the data. These

pointer vectors should make a very fast retrieving of data within a

specified array possible. The generation of the pointer vectors should

take as little time as possible since a huge number oF data will be

organized. The following is a description of the method used by GSPP.

The organization is performed by the subroutine OAF.

First, the working (or organization) domain, which is assumed

to be a rectangle, has to be defined by its lower and upper x- and y-

coordinates (the sides of the rectangle are assumed to be parallel to

the coordinate lines). This rectangle is divided into M*N subrectangles U

of equal area (M in x-direction, N in y-direction). The program finds

for each coordinate pair (x,y) the corresponding element (m, n). After

a couple of operations (mainly integer additions and subtractions) four

pointer or counter vectors are generated, IC1(.), ... , IC4(.):
IIThe vector It I(.) has a length equal to the number of data

and contains, after completion, the element index i corresponding to J
each data. The element index i results from the two subrectangle j

i

.. .F_ _- : ... ..-. .. 1
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indices (m, n), associated with a data point (x, y), and is calculated

according to

i = (m-lI)N +n,

which means i increases rowwise if x is oriented northwards, i increases

columnwise if x is oriented eastwards. Therefore, i = IC 1(j) is the

index of the subrectangle in which the data point (xj, y.) is located.

If the data happens to be outside the working rectangle, an index

M*N+ 1 will be assigned.

The vector IC3(.) is a counter vector of length M*N+ 1; IC3(i)

equals the number of data in the subrectangle with index i. IC3 (M*N+I)

is equal to the number of data outside the rectangular working domain.

The vector IC4(.) is an auxiliary vector of length M*N+I ; its

elements are partial sums of the elements of IC3(.): IC4(1)= 1,

IC4(k) = IC4(k-1) + IC3(k-1), k=Z, ... , M*N+l.

Finally, the most important vector is ICZ(.); it is organized in such

a way that the first data in the subrectangle with index i has the original

j! index ICZ(IC4(i)); its length is equal to the number of data.

The data retrieving process runs then as follows. Assume one

wants to know all data which are located within the element i: there

are altogether IC3(i) data in this element; the index of the first data

is ICZ(IC4(i)), the index of the second data is IC2(IC4(i)+I) , and so

forth- the last data has the index ICZ(IC4(i) + IC3(i)- 1). If there are

no data within the element i, then IC3(i) = 0 and the index counting

would be one step backward. Therefore, whenever there are no data

within a particular element, the index retrieval described above does

not apply.

The following example may illustrate the foregoing (Table 1. 1

and Fig. 1. 1). This kind of data organization is extremely fast because

there are only very simple and very few operations involved; the data

itself are not shifted -- they remain on their original storage locations.
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C A DATA ORGANIZATION EXANPL
C SUBROUTINES USED A OAF

C OUTPUT UITIT : 6COMMON /NDAT/X(30) /YDAT/Y(30) /USORPR/I, XIIA, YMI,YMA, DUNKf(2), N,
N /SORTI/ICI("0) /SORT2/IC2(30) /SORT3/IC3(13)

* /SORT4/IC4(13)
C THE VECTORS ICI(.), ... , IC4(.) NEED NOT HAVE THEIR PROPER DIN.
C AS LONG AS THE NUMBER OF DATA IS LESS THAN OR EQUAL TO 100 AND AS
C LONG AS THE NUMBER OF SORT ELEE T IS LESS THAN OR EQUAL 'ID 1000 j
C
C THE COORDINATES OF THE DATA POINTS HAVE TO BE STORED ON X(.) AND
C Y(. ). ERJ NE GENERATE THESE DATA
C THE NUNBER OF DATA IS NDAT

NDAT= 30
DO 1 I= ,.DAT'41YI) = SIN( 11,12. ) +0. 1

I Y(I)=COS(I*,3.)-O.1
C DEFINE THE WORKING RECTANGLE

XUI*-I.

XflAZ. 1.YDI=-I.

C DEFINE THE NUMBER OF SUBRECTANGLES (SORT ELENENTS) FOR THE DATA
C OIGANIZATION

N=4
C THE NtMIBER OF ELEMENTS IS 12
C CALL THE DATA ORGANIZATION SUBROUTINE OAF (ONE ARGUMENT s NUMBER
C OF DATA)

CALL OAF(NDAT)
C PRINT THE RESULTS (INDEX, DATA, VECTORS ICI(.), ... , IC4(.)

WRITE(6,6000)

DO 2 ImlNDAT
IF(I.LE.NNI) WRITE(6,6001) I,X(I),Y(I),ICI(I),IC2(I),IC3(I),IC4(I)
IF(I.GT.lN1) WRITE(6,6002) I,X(1),Y(I),ICI(I),IC2(I)

2 CONTINUE
6000 FORXAT(IHO,4X,' I X(I) Y(I) ICI(I) IC2(I) Ic3(I) IC

14(I) I ,//)
6001 FORHAT( IH ,4X, I2,2(2X,F6.2) ,3Xs418)
6002 FORNAT( I ,4X, 12,2(2X,F6.2) ,3X,218)STOPEND

Program for Table 1. 1

~ii
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iLn Lnu'

1.25 - 1.25

Figure 1. 1: A3

Data distribution I

(po sition A and

index) .

0.00 0.00

17 3

1S 1 I. 13 3

N 0 NJ

I X(I) Y(I) ICI(I) 1C2(I) 1t3(I) 1C4C1)

1 1.01 -1.09 13 5 3 1

2 -0.66 0.86 4 18 2 4
3 -0.18 -1.01 13 28 1 6
4 1.09 0.74 13 9 4 7
3 -0.44 -0.86 1 12 1 11 Table 1. 1
6 -0.44 0.56 4 15 1 1
7 1.09 -0.65 13 2 1 13
3 -0.19 0.32 7 6 1 14
9 -0.65 -0.39 2 21 1 15 Data organization

10 1.01 0.05 13 27 1 16
11 0.09 -0.11 6 30 1 17 for data shown in
12 -0.81 -0.23 2 11 2 18
1W 0.86 0.17 11 8 i1 20
1. 0.37 -0.50 10 25 Fig. 1. 1
15 -0.89 0,43 3 16
tG 0.65 -0.74 9 14
17 0.63 0.6. 12 13
13 -0.89 -0.93 1 17
19 0.40 0.80 12 19
20 0.85 -1.05 13 1
2, -0.82 0.89 A 3
22 0.12 -1.10 13 4
20 1.00 0.89 13 7
24 -0.67 -1.07 13 10
25 -0.16 0.82 8 20
26 1.09 -0.96 13 22
27 -0.46 0.638 4 23
23 -0.42 -0.78 1 24
29 1.09 0.4e.7 13 26
"0 -0.20 -0.55 5 29



-19-

2. Prediction

The basic principles of the prediction methods offered by GSPP

have been shortly described in section Z.Z of PART A. In this chapter

the practical aspects of least-squares prediction will be discussed.

The idea of least-squares collocation is to take into account all

gravity field information, represented in terms of a heterogeneous data

set, for the prediction of other gravity field quantities; in the ultimate

case of collocation, model parameters can be incorporated into the

solution.
This fine concept can hardly ever be fully realized in practice;

reality demands sacrifices. The following facts make the unified solution

a prohibitive task: covariance matrices are, in contrast to network

normal equation matrices, full matrices. (In collocation one has to deal

with the continuum "gravity field", in network problems with the discrete-

ness of a continuum.) The size of the matrix depends, again in contrast

to network problems, on the number of data. The more data we have,

the better we have sampled the gravity field and -curiously enough- the

more difficult it becomes to determine the gravity field: the instability

of the covariance matrix increases with the data density since the equations

become nearly linear dependent. Apart from the instability there is the

problem to store the matrix - a very serious problem if more than a

couple of thousand data are involved, not to speak about the actual in-

version or calculation of the solution vector. Last, but by no means

least, there remains the actual calculation of the signal (the gravity

field quantity) together with its estimated error at a huge number of grid

points -- we have to keep in mind what we actually want: the determina-

tion of a gravity field surface which is sufficiently well represented by an

array of function values together with an appropriate interpolation function.

How can we. overcome these problems, what are the consequences? I
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A widely applied and generally accepted practice is data selection.

(If in trouble, select -- in analogy to Jeffreys recommendation "If in

doubt, smooth".) It is an obvious and well understood fact that the data

in the immediate neighborhood of the prediction point, in general, contributes

the most and remote data very little to the prediction of the

gravity field quantity. (This does not hold, e.g. , for the prediction of

geoidal heights from gravity anomalies.) Local samples are considered

rather than regional or global ones. The number of data used for a pre-

diction depends primarily on the problem (and sometimes on the personal

taste). Rapp (1979) uses only a very few (around 5) altimeter data for

the prediction (or rather interpolation) of an array of geoidal heights and

in (Rapp, 1978) some Z00 points for the recovery of mean gravity anomal-

ies from altimeter data. Schwarz (1976) stresses the fact that neighbor-

hood - data are the essential information and suggests a data selection.

Lachapelle (1977) considers some one-to-two hundred gravity anomalies

and deflections of the vertical for the combined solution collocation and

integral formulas.

The consequences are as follows: local collocation solutions

prevent an estimation of regional and global parameters like datum shifts

for obvious reasons. Collocation in the local mode can only provide a less

than optimal gravity field solution since an optimal solutim would require

all data to be taken into consideration. This is the price we pay for a

gain in matrix stability, limitation of storage requirements and for keep-

ing the computation time at an acceptable level.

In gravity field surface prediction, the factor time plays, apart

from the others discussed above, a particularly important role. This

is why only local solutions can be envisioned under the present circum-

stances.

The surface prediction algorithum of GSPP is designed for the

local mode only. It considers up to 100 data in the neighborhood of the

prediction point. (This number has been kept low because of the

- -- - -. ..... ... 11
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storage limitations of tae used computer; an increase to 200 or even

300 for a larger computer system requires only a few changes in

the program.) In order to represent the gravity field surface suf-

ficiently'well, a high density of prediction points (grid points) has to

be chosen. If no . more than 100 data are found in the prediction

region, the algorithm uses all the data, calc',lates the inverse of

the corresponding covariance matrix and predcts the signals tog ther

with its rms-errors at all grid points. The situation changes if

more than one hundred data are used. The algorithm switches over

to a mode which can best be described as moving inverse covariance

prediction. Its principle is as follows. Assume a fairly homogeneous

data distribution and a grid as in Fig.BZ. I. gravity field surface

function values are to be predicted at all the grid points. Assume

ifurthermore a circular region Ri centered at the grid point Pi andi,
another circular region Ri+l centered at a neighbouring grid point

Pi+l (see Fig. BZ. 1). All data within Ri are used for the prediction of

Si (the gravity field surface function value at the grid point Pi), all

data within Ri+l are used for the prediction of Si+l, have a common

subset Si, i+l which is the intersection of Si and Si+l,

Si, i+l = Sifl Si+l •
In Fig.BZ.1 the subset S1, consists of the data (black dots) within the

crosshatched region.

it
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Figure B2.1: Data selection in moving inverse covariance prediction

mode

Let Ni and Ni+l be the number of data belonging to the set Si and

Si+l, respectively, and let Ni, i+l be the number of data belonging

to the common subset Si, i+l. (In Figure B2. 1, NI = 28, Nz = 30,
Nlz = 27.) The corresponding covariance matrices are Ci and Ci+l,

its common part Ci, i+l. If the grid is dense relative to the data

distribution (a necessary requirement for surface prediction), then

Ci+l will differ only slightly from Ci; with other words, the dif-

ference matrices Ci Ci, i+l and Ci+l-Ci, i+l will have only a few non-

zero elements. (In Fig. BZ. I C1 has 406, C2 has 465, C, 2 has 378;

V'

~t~4 nfl~ - - ~ - - ~ - .
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therefore CI-Cl, 2 has only 28, C2-Cl, 2 only 87 in general non-zero

elements. Here we have considered only the upper triangular part

of the symmetric covariance matrix.) Consequentlv, it should be

-1
possible to find Ci+l (the inverse covariance matrix corresponding

to point Pi+l) in a fast and simple way, if C7 1 is known. In fact,

the problem reduces, in principle, to a two-fold application of matrix

inversion by block-partitioning.

Let C i be partitioned into 4 parts Ci, i+l; Bi, B7T , D i and
-1 Tsimilarly its inverse C 1 into Ki, L i , Li Mi,

Ci = i, i+l Bi i= iL

(B• D i ) L i  Mi

There it follows from simple matrix algebra (Faddejew - Faddejewa,

1970, p. 201 ff. ), that

T -1.-1

Mi (Di" B' Cii+ B ) , (2. Za)
Li~ ~ ~ C , i+l B 02 b

L. C_ BM., (2. 2b)
Ii, i+.

K -1 T
K C'.i (I - B.L. ) (2. 2c)

1 i,i+l 1 1

with I denoting the unit matrix. In the same way as above, the matrices,
C1

iand C can be partitioned.

C.+ (C. B , _ 1 ( L., (2. 3)
i, i+l i+l i+l i+l i+l

i+l i+l i+l i+l

Note that C is common to both, C. and C and so is the inverse
-li, i+l ( i+l --I 

-

Ci, i+l. If this common inverse is known, then C i+l can be found in the

way described above,
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T -1 -1

Mi+l (Di+l B i+l i, i+l Bi+l) (Z. 3a)

L -C- 1  B M (2. 3b)
i+l i, i+l i+l i+l

K c- (I-B LT (2. 3c)Ki+l i, i+l " i+l 1+I)

Therefore, the problem of calculating Ci~ if C is known, consists in
-I

finding C and in calculating Mi+u Li, K. following the equationsi, i+l i l i 1 ~

above.
-IT

Multiplying equation (2.Zb) by M.I L , we obtain
Ifl,

T ~ T
L...- -C. BLitI 1 i i, i+l i i

which gives, by inserting into (2. Zc), the inverse of the covariance matrix

corresponding to the common data set S., expressed by the known four
-1,

submatrices of C.

Ci 1 i+= K. - L.M.LT. (2.4)

_1 TC i, i+Il K i L i Li(24

The important point is that M. as well as M is usually very small
I i+l

compared with C. ; (for the data configuration of Figure 2.1, M1

has dimension (1, 1), M2 has dimension (3,3) and C1, Z has dimension
-1

(27, 27). ) It is important to realize that, for the transition from C. to

i+l 'only two inversions of generally very small matrices with dimensions

of M. and M are necessary. (The vector and matrix multiplication are
ii+l

relatively inexpensive.)

There needs still one problem to be solved which was tacitly passed

by: the matrix C.1 has to be re-ordered according to a permintation vector1

whose elements point to the data within the prediction circle. This pro-

cedure consists mainly of logical operations and is very fast; it is accomp-

lished by the subroutines BUBBLE (which rfakes a vector bubble sort,
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generating the permintation vector), and MATUMD (which does the actual

matrix reordering).

The principle is as follows: N. data were found in the region Si,
a vector V. is stored; its elements point to the data in Si, the inverse

covariance matrix C. is given; in the next step N+ 1 data are found in

the region S a vector V is generated whose elements point to the
i+l' i+l

data in Si+l . Ni, i+lelements are common to V. and Vi 1l but the cor-

responding sequential locations within V. and V. will, in general differ.
1 l

Therefore, Vi+l passes a sorting algorithm which "bubbles" all common

N. i :data in Vi+l upward such that, after the bubble sort, the N +i

common elements occupy the first Ni, +1 places in the vector V .  A

pointer vector W. is generated whose elements point to the retained

elements in V i .

V i(j) Vi+10j) Vi+l(j) Wi(j)

before sort after sort

1 3 7 3 1

2 17 8 8 3

3 8 79 24 4
4 24 3 45 6
5 11 41 7 2

6 45 24 79 5

7 45 41

8 13 13

Table 2.1 Example of bubble sort used in the prediction part of GSPP

I '
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This vector Wi serves as a permutation vector for the re-ordering of

the inverse covariance matrix C i 1

At this point the reader might ask why we are calculating

the inverse covariance matrix; we could probably apply a

similar algorithm for the calculation of the solution vector of the

linear system.

= Cp (2. 5)

with C.. . covariance matrix,

Cp*. cross-covariance vector (signal-data)

.... solution vector
Note that the right side of equation (2. 5) is Cp and not the dataIp
vector 4; this can be done since we estimate for each solution vector

only one signal. The predicted signal is then given by

S= I (Z. 6a)

and its estimated error variance by
m ,=TC (Z. 6 b)
P= Cpp

This method is reportedly two to three times faster (Lachapelle, 1977)

essentially because it bypasses the matrix inversion. Here the

inversion method has been chosen since it looked more transparent
to the author; the solution vector method should 'be investigated.

As mentioned before, the use of the moving inverse prediction

method is somewhat restricted; it is very advantageous for the

solution of very large problems which reduce essentially to interpola-

tions, differentiations and/or downward continuatious; examples are:

determination of a digital geoid based on altimeter data, solution of

the Bjerhammar problem, prediction of mean gravity anomalies from

point gravity anomalies, gravity interpolation, interpolation of
vertical deflections, determination of mean gravity anomalies from

gravity and gradiometer data, etc. For the solution of problems

which involve the whole data vector and allow, in addition, the

estimation of parameters, an excellent operational system is available
which is based on stepwise least-squares collocation (Tscheriling,

1974).
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3. Regression

The calculation of the parameters of a least-squares regression

polynomial, in GSPP, is based on the following premises: the data

J are error-free and homogeneous evaluation functionals of a surface;

data (and surface) are defined on the Euclidean plane. Then a least-

squares regression polynomial solution, based on the data (x.j Y

[fid, i= 1, •., I, f. = f(x i , yi), is described in Section 2. 3 of Part A;
the parameters of the polynomial are given by equation (2. 3-2). The

design matrix tij) = (Li YjP , .•. base-functions, in its

explicite form , is given by

1, xj, Ys, x1, xyy, ... , yYn?i n
1, xis Y 2 n z, . y

, ~yy~ ... ,

The corresponding normal equation matrix 0 T (for equal weights) is

unstable for large n. GSPP allows the degree n to vary between 0 and 5;

the degree has to be such that the number of data I is bigger than the

number of parameters J, with J J (n) given by

(n + ) (n +Z)

Fra a

there is no generalized inverse solution allowed in GSPP. If n has

been defined such that Ir J , the highest possible degree will be chosen.
• ,For reasons of stability, the coordinates (x., yi ) are transformed

linearly such that mx!, y! = 0 and n~i (x! or y) = 1, depending onI whether the range of x or y is bigger. Therefore, also the para-

meters [a.) j = 1, ... , J, refer to these transformed coordinates.
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This has to be taken into account if operations of any kind are to be

applied on the polynomial.

The actual calculation of the least-squares regression polynomial

is performed in the subroutine REGPOL. If the domain of definition
was not specified by the user, it will be defined in GSPP (if REGPOL

is run separated from GSPP, these values have to be defined). The

output is the vector of polynomial coefficients, normalized ao described

above, the root mean square and average absolute approximation error,

the individual approximation errors (actual function values minus poly-

nomial derived function values) if requested, and a matrix of polynomial

derived function values at the grid points of a user-specified (or GSIP

selected) regular rectangular grid. These grid point values, in turn,

can be used by GSPP for profiling, contouring and a 3-D plot.

In the following we give some examples of how the regression

part can be used.

3.1 Regression polynomial based on irregularly distributed data

In this section a typical application of a least-squares regression

is shown: there is given a set of erroi-free, homogeneous, irregularly

distributed data defined on the two-dimensional Euclidean plane. A

least-squares regression polynomial of a certain deg.ee has to be
calculated and interpolated at the grid points of a regular rectanbalar

grid. In addition, the individual approximation errors (data reproduction

errors) should be calculated. In the following program the polynomial

degree has been chosen to be equal to 4 which is too high relative to

the number of data which was selected to be equal to 14. Therefore,

the program changes the degree to 3.

In the sequel the program plus input/output are listed.

'~I

_-=



-129-

C AN -:,t ,?PLE OF A LEAST-SQUARES Rr-,-RZSSIOIT POLYN!IIIALBASED ON
C IPJLGMJA2LY DIISTRIDjUTZD DAA

GOI~OI /J)T.-X(14)/YAT/( 4)/ZDAT/Z( 14) /UC IP/ IDUNTI . X, NY,

C A .STME T ?0L1. I TAL INTEPLPOLATIED, FUNiCTION VAL1UES AT 'ME GRID
CI1~6 Inwi ;D!3 17) TS UR/LL,~,Y/OP./O
C ~ VD EE ; lJ fl3ER OF DATA

11,1..C=.O ... DATA A'IIE IUIEGULARLY DISTRIBUTED

13 Y ALONG WZT - zSTo)) OT;
C 7INTIO VALUE

C E I'M 0 . 1? T2 is CA,3 T:4-' ORIGINAL FUNCTION VALUES WILL BE DES-
C T.' ) iED XN79 Z"A~Y TIM,~ IN~DIVIDUAL i'ASTA I3.1A'ROi)UCTION EIR-OIIS

C I Z- _' M, 11'A-X, J)11x6 k0E TiUE D~IMENSIONS OF A AS DLFIiNED IN THIS

12M, NY ... NUTM OF G(XUD POiN'S MN X AND Y DIRECTION
C~G nLEFT LORNE ( :y. R. lYT

'ALT., YLL I.. OCRIifI'Z OF TIME RID'S LOW.ERLFCOER(OE-

DX .D GRID DII3TAHCE-s IN X AND Y DIRECTION
C UT ... OUTUT Urw !I ORl M.'SSAGES AND RESULTS I

C IMMI,1.ILMUT2(6~) ILI) DU143( 17) 02hi DUIY VECTORS
IDxr:11' 14

DI I

~'72 : Z1)

if", T" I OT,6,0
DO01 1 I= 1, NDNI' !I

2 A WIM:0I 3.),:2O- 100)I()IZI)Z
WR( C2 IO6.)2)11 109
Iz I 1+( 1)

3 01ITIOUT, 6003)((10 ,1 J:,IY

200 WR M IT ( IOUT.60041) 1411 MY I) ( ) Z(( )I)I',/

,.0 F:MrI( lO1T, 4.KO3.2)

L i



-130-

S X() Y(1) Z(1) DZ(I)

S1 109.09 -119.80 0.69 0.18 X

2 92.43 -80.30 0.50 -0.13
S 97.21 -118.22 0.03 -0.I3
4 109.39 -83.!2 0.:3 -0.03
5 94.56 -!15:.9 0.73 0.4015 94.63 -66.79 0. 77 0G Y

7 .9 1 -o 0 -o.
97.1 -91.52 -0.94 -0.29

11 .3 -o..1 -0.7 -0.7
10 102.1 -96.00 0.00 0.30 t

7 0? .91 -100.217 -0.19 -00 1 0.08

12 90.92 6 0.6-0. -0.20 -
10 107 63 -94-. - ' -0. "' -0. 27
IV 102.71 -103.06 0.00 0. q GO

0.73 0.57 0.34 0.1I0 -0.09 -0.19 -0.15 0.08

01 -00 -0..2 -0.40 -0.3 2 -0.54t -0.40 -0.06

0.15 0.01 -0.17 -0.33 -0.42 -0.09 -0.20 0.21

0.47 0.28 0.07 -0.11 -0.120 -0.17 0.04 0.48

0.63 0.36 0.08 -0.15 -0.30 -0.30 -0.10 0.33

0.22 -0.17 -0.56 -0.89 -1.12 -1.19 -1.05 -0.66

Table 3. 1. 1: Third degree least-squares regression polynomial

based on irregularly distributed data x; y; z = z(x, y)

3. Z Regression polynomial based on regularly distributed data

If data are distributed on a regular rectangular grid, and stored

on an array corresponding to this grid, then a slightly modified version

of the above listed program is necessary in order to obtain the regression

field. The following example may serve as an illustration.

Both regressions described above can also be obtained by .alling

GSPP; the regression surface can be contoured, profiled or plotted

as a 3-D view. These integrated applications will be described in

PART C.

S i,
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C RE--GnESIOii POLYNOIIIAL BASED ON REGULAR~LY DISTRIBUTED, DATA7
DIZIENSION A(3,3,2)

c:o /UCIP/IDU1l,lX.NiY, 1DUN2'>6) ,IWI, IDU,( 17),41 /UC,'XLL,YLLDX
,DY /iOi1VIOUT

flD!AT=0

!GUTA"=

C REA, TI]E DATA; HERE: GENERATE TEE DATAr DO 1 I1
DO I j J1.11"

1 A( I.1)=S~(Ic.:CSJ3);
C PfII U T10 DATA

DO ee~1N

C CALL THE SUBROJTIIE Rr-GPOL
CAL' EL .?~1~ IYAIZIX DT ~

C PRlINT TIM GRID VALUES OF~ THE RECRESSION POLY7NIALS AND] THE IINhI- I
C VIDUAL ~?R~UTOil ERROBS

IM!TECIOUT,6003) ((1J1,~,Y
2 CoI IIUE

DO 1= !'IX

3 'CiIUE
6003 FOr-univ 1i, 4,F...2)

STO?
END

Program corresponding to Table 3.2. 1
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5.31 -5.!5 ~.89 -4.53 4.08 .- 3.34 2.94 -2.28

5.39 -5.22 4.96 -4.59 4,. 13 -3.59 2.98 -2.31

-9.79 9.50 -9.01 8.35 -7.52 6.53 -5.42 4.20 X

2.77 -2.68 2.55 -2.36 2.12 -1.85 1.53 -1.19

7.49 -7.27 6.90 -6.39 5.75 -5.00 4.15 -3.21

-9.00 8.70 -8.23 7.67 -6.91 6.00 -4.98 3. S6

Regularly distributed data

AVEI_4,GE, ABSOLUTE POLYNOHIAL APPOXINATION ERROR ... 4.804

r, POLNOMIAL APPROIUIMTION ERROR ... 5.433

4.06 -0.55 -1.02 -'.:40 0.00 -0.05 -0.39 -1.1!

1.71 -0.48 -0.08 0.64 0".86 0.38 -0.09 -1.54

-1.53 -2.12 -1.25 -0.44 0.02 0.26 0.68 0.26

0.25 0.01 0.16 0.01 -0.21 -0.03 0.66 0.86

2.19 2.39 1.75 0.37 -0.97 -1.51 -1.14 -1.12

-4,82 -0.003 0.49 0. 26 -0.30 -0.07 1.04 1.55

4th degree regression polynomial grid point values

1.25 -4.60 5.91 -4.13 4.07 -3.49 3.33 -1.17

3.67 -4.74 5.04 -5.23 3.27 -4. 17 3.07 -0.76

-8.26 11.62 -7.76 8.79 -7.54 6.17 -6.10 3.94

2.52 -2.69 2.08 -2.37 2.33 -1.82 0.87 -2.04

5.30 -9.66 5.15 -6.75 6.72 -3.49 Z.28 -2.09

-4.18 9.61 -8.73 7.44 -6.60 6.08 -6.02 2.31

Residuals

Table 3.2. 1: Least-squares regression polynomial based on regularly

distributed data.

[I

__ _
- ~ -~ - - -
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4. Smooth surface representations

One essential part of GSPP is a set of subroutines which is

needed for a smooth representation of a surface by a bicubic spline

function together with a surface interpolation/differentiation algorithm.

4.1 Calculation of spline defining values

This section gives a practical example of how to obtain the spline

defining values by the subroutine BISP, isolated from GSPP. The neces-

sary background and formulas are contained in Section 2.6. 2. of PART A.

Let us assume that function values are given at the grid points

of a regular rectangular grid (m=l, ... , M; n=1, ... , N). Then the

bicubic spline defining values is the set {fmn, Pmn, qmn, rmnl1 , m=l,

* 1 #M; n=l, ... , N (see Section 2.6.2) of PART A. The function values

at the grid points ffmn I are assumed to be known, the derivatives

I Pmn' I m have to be determined. Under side conditions as

explained in Section 2.6.2, of PART A this set of values defines the bi-

cubic spline surface uniquely.

The following program can be used to calculate these values by

using BISP.

C AN EXIPLE OF A BICUBIC SPLINE DEFINING VALUE CALCULATION
DIMENSION AC 10, I0,, )a A(.•,.•, I) ... • STORES TIMe REGULARLY DIST111B13TY17 DATA

C A(.,.,2) ... I. DERIVATIVES IN X-DIRECTION (ACROSS, SOUTH - NORTH)
C A(.,.,3) ... I. DERIVATIVES IN Y-DIRECTION (ALONG, WEST - EAST)
C A(.,., 4) ... 2. MIXED XY-DERIVATIVES
C DIX, NY ... ACTUAL DIDIENSION OF TiE GRID
C OUTPUT UNIT = 6H'X= 6

1OUT=6
a RuAD THE DATA; tIER: GENERATE THE DATA

DO 1 1=1,111
DO I J=1,INY

1 A( I,J, 1) =(SIN(0.,5-I) +C0(.6J) ):1O
C CALCULAT, 'rInI DEFINING VALUES

CALL BISP(A, 10, 10,1IX,11Y)
C PRINT DATA AND RESULS'S

DO 01 K:I,'4
11RITE( IOUT, 6000)

2 , -D I=IIIP1

2 11111RTl( lOUT,6001) (A(I1,J,IO,J=I,.NY)
3 COIITIIUE
6000 FOIUIAT( IfO, IX,f.)
6001 FO.t'AT( iIIO, 4X, UF I0. 6)

END

Program to Table 4. 1. 1.
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Table 4. 1.1

Bicubic spline defining values

9.6646 '5.0348 -0.8608 -5.9627 -8.4887

14.2381 9.6083 0.7127 -1.-892 -3.9152 Function values at the
17.346 12. 7166 6.8210 1.7190 -0.6070 grid points (data)

x
18._22-G 13.5985 7.7029 2.6010 0.0750

".6601 2.0, 127 1.0408 -1.4832 y
10.0476 8.4173 2.5222 -2.5797 -5.1037

4.32 4.8432 -4.8432 -4.432 -4.332

-4.000 -5.3S1 -4.041 -4.044 -4.013 Dx-derivatives

-2.0607 -2.963 -2.0657 -2.0637 -2.0653
i,0 ."' 62 0 .S26 0• .= 0. 262 0.30262

+I'2.7953 2.7953 2.-958 2.4-9543 2.7953

-.-0328 4. 0328 -4. 0,323 4. 0328 4. 0028

-4.2800 -5.3293 -5.9790 -3.7474 -1.9153

-4.2300 -5.3293 -5.9790 -3.7474 -1.9153

0,000 .0. o Dy-derivatives

-4.20 -. 33293, -5.9790 -3.7474 -1 .9153 ydriaie

-4.2800 -3-1290 -5.9790 -3.7474 -1.9153

-4.2300 -5.3293 -5.9790 -0.17474 -1.9153

S-4.2300 -5.8293 -5.9790 -3.7474 -1.9153

-0.0000 0.0000 0.0000 -0.0000 -0.0000

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 Dxy-derivatives
0. 0000 0.0O000 -0. OCO 0O. 0000 -0. 0000

0.0000 0.CO00 -0.0000 -0.0000 -0.0000
-0. 0000 -0. ¢000 -0. 0000 -0. 0000 0. 0000 i

0.0000 O. ¢000 -0. 0000 0. 0000 0. 0000

'II

A, -- -~
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The reader will probably realize that no grid distances have

been defined. This is not necessary because the defining values

returned from BISP are normalized ones: they refer to a square

grid of grid distance equal to 1. The reasons for the normalized

calculation are simplicity and stability; there is no restriction of

generality involved: it can easily be shown that the defining values

referring to a non-normalized grid can simply be obtained by dividing

the x-derivatives (pmn3 by the grid distance in x-direction, the

y-derivatives (qmn) by the grid distance in y-direction and the second

mixed derivatives rmn) by the product of x- and y- grid distances.

BISP is designed for a maximum grid size of 300 x 300. The

CPU-time needed increases only linearly with the number of grid

points involved, a good rule of thumb is: number of grid points *

1.2 . 10 - 4 seconds; this number refers to a AMDAHL 470 V/6 -II

computer. The following Table lists CPU- estimates for a couple of

grid sizes n (square grid). The estimates refer to a AMDAHL 470

V/6-II computer:

n CPU-time (sec)

5 0.005

10 0.012

25 0.074 Table 4.1.2

50 0.288

100 . 162

4.2 Smooth surface interpolation/differentiation

How a bicubic spline is interpolated and differentiated.

is demonstrated in subsection 2.6.3; the formulas (2.6-7a,b) are

optimal in terms of computer time (PART A).

The interpolation/differentiation of a spline is a 3-stage process:

! i
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In the first step the grid element, corresponding to the

coordinates of the calculation point, has to be found: with (xj, yl) the

coordinates of the lower left grid point and (h,., h ) the grid distances

in x- and y- direction, the grid element indices are, for a point (x, y),

simply given by

m = int((x-xi)/hx) + 1, n = int((y-yl/h ) + 1,

(int... integer), if the calculation point (x, y) is located within the

domain of definition of the bicubic spline.

The second step consists in the calculation of the 16 coefficients

of the bicubic element. A straightforward way would be a calculation

using equations (Z.6-5a, b); which gives the 4x4 matrix of coefficients

as a product of three 4x4 matrices (see PART A).

A HT(h,9FH(.)

This operation involves 128 multiplications and 128 additions and uses,

even in the normalized version (hx = hy=l), 700 micro-seconds to

calculate all 16 coefficients (the matrix A). Since A has to be cal-

culated, in general, for each calculation point, it is very important to

optimize this algorithm in terms of CPU-time. After many trials I

found a very fast and probably optimal solution which involves no

multiplication and only 58 additions; the time elapsed for the calculation

of all 16 coefficients using this fast algorithm is as Little as 58 micro-
seconds which corresponds to a 12-fold gain in calculation speed.

The following Table lists CPU-estimates for the calculation of

all 16 coefficients for all elements of varying size square grids

(n xn elements). The estimates refer to a AMDAHL 470 V/6-ii computer:

1 n CPU-time (sec)

5 0.0015

10 0.0058
TABLE 4. 2. 1

25 0.0363V
50 0.1450

100 0.5800

I-
~1.i
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The subroutine BILDE is responsible for the calculation of the

coefficients.

After these two steps the actual interpolation/differentiation can

, be performed. Sirce all calculations in the bicubic spline algorithms

refer to a normalized grid of unit grid distances, the relative

coordinates of the calculation point are also to be referred to this
_unit grid distance; for a point (x,y) they are simply given by

X = (x-x1)/hx - (m-s), y = (y-yl)/h y- (n-i)

with (m,n) element indice- as defined above. The interpolated/differentiated

bicubic spline at a point (x, y) (within the domain of definition) can then

be obtained by the set of formulas (Z.6-7a,b) of PART A after division

by the appropriate grid distances. The calculation itself is performed

in the subroutine BSFC. The subroutine is designed such that it can

provide all spline derivatives

c~i+~z

(BSFC is not designed for third order derivatives with respect to %

and/or y.)

The following Table gives a listing of CPU-time estimates for

the interpolation/differentiation part and for the total CPU-time used

(index finding, calculation of parameters, interpolation/differentiation).

The following Figure 4.Z2. 1 with the corresponding Table 4. 2.3

shows the function values of 25 regularly distributed data, the corres-

ponding spline surface, and lists interpolated/differentiated values.

The program below has been used to generate the output given in

Table 4.2. 3.

L
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C A BICUBIC SPLINE INT RPOLAT!ON/)DIFFERETIATION EXAMPLE
C A(...,.) ... ARRAY STORING TIM BICUBIC SPLINE DEFINING VALUES
C ITUCIAX, I. ... lCITUAL I 1 .AN D 2. D IEISION OF A
C I, NY ... ACTUAL 1. AID 2. DIMENSION OF A
C DX, DY ... GRID DISTANCES iH X AND Y - DIRECTION (ACROSS, ALONG)

, NU ... LO1IZ AND UPPER i - BOLNDS OF T DOMAIN
C YL, Y-J ... LOITER AND UPER Y - OLIDS OF THE DOMAIN
C IN-C ... I{JILER OF CALCULATION POINTS PROCESSED

X, Y .. COORD!NATE3 OF t- CALCULATION POINT (ACROSS, ALONG)C 2m1.P, YNR ... :10, LALIzED RELATIVE COOR DI{ATES FOR BSFC
C IX, 1" ... IUU.-ER OF DERIVATIVES IN A AlD Y- DIRECTION

D!I2I.31ON A(5,5.4)
COiU'.IONI /COH22'/-R, rNR, DX, DY

C (XL.U; YLYU) i= T= DOMAIN LIMITS

C s H CBC SPLINE DEFINING VALUES; HERE THEY ARE GENERATED)

ImI, J. 1)=( SIII( 1*1. )+COS( J*2.) )*lo

=OF CALCULATION POINTS

N NC

DO: 2. !=,N

0 1=D ALL CALCUL.ATION P0OINT COORDINATES AND THE NUMBER OF DIFFEREN-
CTIXYIOrIS IN 2{(ACROSS) All! Y(ALONG) DIRECTION

IF A CALCULATION POINT HAPPENS TO BE OUTSIDE THE DOMAIN, PRINT A
C IIESSAGE AND GO TO TIME NEXT PO (NT

(,GE.X. AND. .LT.U1).Y.GE.YL.AND.Y.LT.YU) GOTO 3
.~TZ(O.6000) I,XY,IX,IY

COT() 2
COlIIIU1HE
CALVJLATZ TM- ElEMDENT kI1DICES AND THIE NORMALIZED COORiDINATES
15c:-L)/DX

MN= 'N.+ (I . D

Y: (Y-YL)/DY

C CECIC IF THE INDICES HAVE CHANGED RELATIVE TO THE LAST CALCULATION
C POINT; IF NOT,.TrlE POLYNOMIAL COEFFICIENTS NEED NOT BE CALCULATED

AGA 1 I
( I.EQ.I(.All D..E.N.) COTO 4

C CALC'bULATZ, TM-: COE F VIC IEN TS O F THE BICUBIC POLYNOMIAL
CALL B ILDE( A, .LV, NYII, NY(, N)
CONTINUE

C iAERPOL.ATIOI/D IFFERETIATrION
F ESC( ?%, I Y) _

C PrIN1T TIM, ViZSULS
1RI!T(6,6001) IXy, IXIF

2 CONTINUE
6000 F2AlO4,52,1.23,IX' OUJTSID)E DOMAIN-)
6001 FOrZ!T(1Lo,1:,X, 2F0 ,X 2X,FIO.2)
GC12 FOM1AT( 101;X,, Y IXIY

G000 FONuSAGT(I41,1 DOM1iN LIMI1S AND GRID PARAMETERSTE,//,9XTXLPON

r'..-'. ( 2,00" UN, "" .... I] ,X, ... IX I I0YN Y . ,

r, -, GTO

,C.,,.-( I I!

Program corresponding to Table 4.Z. 3

S7"!
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only inter- total CPU-time

A,.. A~ ol/diff. (rnicrosec.)
0 0 18 76

1 0 19 77

0 1 19 77

2 0 18 76
1 1 Z1 79

0 2 28 76

2 1 20 78

1 2 20 78

2 2 19 77

Table 4.2.2

CPU - time estimates for Z-D spline interpolation/differentiation

DOMAIN LIMITS AND GRID PARAIETES

nL ... 1.00 XU ... 11.00
YL ... -1.00 YU .... 15.00
DX .... 2.50 DY ... 4.00wc 5 fly ... 5

X Y IX Y

,1 3.27 7.38 0 0 19.12
2 8.53 2.11 1 0 -2.20

3 1.16 10.24 0 1 -4.04

4 13.15 7.55 2 0 OUTSIDE DOMAI

5 1.10 14.12 1 1 0.00

6 9.99 2.5, 0 2 2.01

7 6.34 12.2! 2 1 0.00

8 7.51 a.77 1 2 -0.00

9 -7.22 10.00 2 2 OUTSIDE DOMAIN

Table 4. 2. 3: Bicubic spline interpolatiin/differentiation
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10.0

.7 03

7.5

215 111 (0 -77 0

4. .6 18.0 7 0 Co

0.0 4.0Q 8.0 12.0

Figure 4. Z. 1: Data distribution and corresponding bicubic spline

surface contour plot.

j ~ ~ "
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4. 3 Data approximation errors

Whenever the function values of the surface are predicted at

the grid points of a regular rectangular grid, and the surface is

represented by a bicubic spline, interpolating these grid values, the

irregularly distributed homogenous data are, in general, not repro-
duced. It is obvious that the data reproduction errors (the difference

between the actual data fi and the corresponding surface value fi)

decrease with decreasing grid distance; if the error norm is defined

in terms of the maximim error,
A

Ilell := max Ifi " fil,
Vi

the error norm goes to zero. This, however, does not necessarily

mean that the spline representation of the whole surface is getting

better with decreasing grid distance. Nevertheless, the above error

norm provides a first estimate of how well the data are reproduced.

The subroutine REPRO is designed for the calculation of the

individual data reproduction errors, the average absolute, and the root

mean square (RMS) approximation error. When.ever the individual

errors are calculated, the original function values will be destroyed

and replaced by the corresponding approximation (reproduction) errors.

If a data point happens to be located outside the surface domain, it

will not be considered for the data reproduction error calculation and

a value of 99999.99 will be assigned to its error. The average and I
RMS errors are edited on the lineprinter (or any other assigned output

device). The following example may illustrate an isolated use of the

subroutine REPRO. Further information can be found in the comment

statements to REPRO.



C TEST OF THlE LJATA REPROOUCTION ERROR CALCULATION PROGRAM *REPRO'
DIMENSION ACk5v25t4)v ZZ(100)
COMMON 'XOAT'X(100) /YOAT/Y(1O0) /ZOAT/Z(100) /UCIPIIUP(30)
*iUCRPiUP(3O) /IOSPARi$NUUT
DATA IXMAXtNYIAX#MZMAX/2*25t4/

c .iNPUT LNIT o. INPUT9 OUTPUT UNIT oew NOUT
1NPUT=5
NOUT=6

L READ THE DATA
C READ ThE DATA9 ERROR 11401CATES EN~O OF DATA S~lw COPY Z(o)

18 READ(INPUT~P*ERR=19) X4N)v Y(N)o Z(N)
ZZ(N)=Z(N)

Ii bOTO 18
19 NOAT=N-i

W~RITE(NOUT5U~O1) MOAT
51)01 FORMAT(1$Ov4XvNU1BER OF DATA FOUND IN DATA SET 991#/

~c, FRATAD HO ,SURFACE ARRAY PARAMETERS .5A

*'COORDINATES OF LOWER LEFT SURFACE ARRAY POINT : X = fF10.2t
*' Y = 9FlOo.v.*95Xq'GRID DISTANCES IN X-AND Y-DIRECTION :Ov
*2Fl1o49,,5Xq'NUM8ER OF GRID POINTS IN X-AND Y-UIRECTION hIt

*2 15 1-$ .0
c READ THE SURFACE ARRAY A(.,v1v) AND ECHO IT

WRITE(NOUT96000)
6uUfl FORMAT(1H0v.4X'FUNCTION VIALUES AY ThE GRID POINTS :09/)

CALL ORUCK(.AMXMAXNYAXMZMAXIUP(2).IUP(3),1.UP(1)tUP(2),UP(3),
*UP(0v368wO9OO)

C CALCULAIE THE BICUBIC oPLINE REPRESENTATION
CALL BISP(A.MXMAXNYMAX.IUP(2),IUP(3))

C CALCULATE THE DATA REPkOOUC71ON ERRORS
CALL REPROtA*MXMAX*NYMAXPNOATt3)

C PRINT THE DATA AND THE INDIVIDUAL ERRORS
WRITE(NOUT uOO)

7000 FORMAT(ltlOt4Xt'SPLINE DATA REPROUUCTION ERRORS :lt/t
*X I X(I) YCI) ZtI) ERR(l)'o.)

00 7001 1v1NDAT
7001 WRITE~i4OUTv7(a02) 1I, XIII)p Y(II)i ZZ(II)t Zi11)
7002 FORMAT(1d ,lkI5,iIlO.2)

STOP

E ND
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NUHBLR OF OATA FOUNO I DATA SET *.. 17

SURFACc. ARRAY PARAM TEK
LOORuINATES OF LOWER LEFT sURFACE ARRAY POINI X 47.67 Y = 14.00
IRIO 0DITANCES [N X-ANO Y-UIRECTION : .0417 .0667
NUMBLR OF bRIO POINTS IN X-ANO Y-DIRECTION : 8 8

tUNC110N VALUES AT THaE GRlu POINTS
long. 14 .0 14 4.0 14 8.0 1 12,* U 14 16.0 14 k. 114 24.0 14 28 .0

lat.

47 57.5 -11.39 -12.17 -7.12 -12.1i -11053 -8.71 -10.20 -10.15
147 55.0 -10.25 -9.21 -9,04 -11.25 -11.53 -9.7d -1073 -10.96
47 5ke5 -13.25 -13.8J -11462 -14,63 -11.81 -12.33 -12.01 -1379
47 50.0 -13.26 -13.23 -11,79 -11.55 -15.02 -10.69 -12.37 -12.05
47 47.5 -13,51 -15.99 -1S,65 -28.03 -20.28 -2053 -20.01 -28.73
17 45*0 -18.50 -19.75 -20.72 -19.62 -26o49 -18.33 -15.81 -14.29

147 42.5 -17.15 -17.06 -19.28 -24e45 -19104, -19045 -19.78 -19.54
47 1O0O -18.62 -18.79 -19.31 -24.48 -22.72 -1864 -14.89 -17.44

AVERA6 APPROXIMATION ERROR *.. .723
RMS APPROXIMATION ERROR so* .848

SPLINE DATA REPRODUCIION EkRORS :

I X(I) Y(I) Z(I) ERRI)

1 47.88 114,26 -11.35 .46
2 47.84 141.26 -13e146 .93
3 4777 14.17 -22e93 -. 03
41 417.72 14.33 -20.64 -1.63
5 47.93 14.25 -12.36 -.53
6 4796 114.01 -18.02 100000.00
7 47070 1414 -21.37 .93
8 48.15 14.43 -11.33 100000.00
9 4819 14.6 -11402 lOUOOn00.

10 47.75 14.34 -17.04 .46
11 47079 11423 -2451 1.26
12 47,93 14 .07 -9 038 -o.20
1.3 47092 14e52 -10070 100001).00

14 48.16 11.53 -10084 100000.00
15 4769 11019 -24144 88
16 47.77 114.11 -19.10 .64
17 18.18 14.03 -17.19 100000.00

.......... .....- --
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5. Axis plot

Axes are plotted automatically by GSPP in connection with

profile and contour plots, unless its plotting is suppressed. The

subroutine ACHSE is responsible for the axis plot. It is designed

for virtually all different cases: arbitrary direction, scaling, tick

marks right-or leftbound, scale numbers right or left of axis in four

different directions (integer multiples of 900), variable number of

decimal digits, variable height of scale numbers, variable tick mark

length, variable distance (axis, scale numbers), and many other

options more. For a detailed reference see the comment of the program

listring.
In the following three examples of axis plots are shown. Axis

n corresponds to the n' th call of ACHSE in the subsequently listed

test program.

I I
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FAXI4", L,; OF DI|rFEkENT A.' IS PLOTS
.; !-)U.:MTC(IN OF 'HE INIUT (AND OUTPUT) PARAMETERS CAN BE FOUND

I ti SU)BRO Vl I NE ACHSH"
.. AI L r"L ,IS(, jo. " 1(4)
ii cn , ,' ....

:':J !. O):lTli)

I 1:' 100 LIS .20 ,0 M . O ,1 , 1. 19 i25 1. I,1"

c;ALL P, (1' ( 0 . , 9 9)

€,: I ll

axis No. 3 axis No. 2

Oot

-10 0 10 20

axis No. 2

Figure 5.1: Examples of axis plots
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6. Grid plot

Superimposing a grid over a contour plot simplifies a possible

interpolation process. GSPP assures that the individual grid interval

is identical with the tick mark interval, if an integrated grid plot is

i requested. But a grid of arbitrary shape, size, and orientation can be

superimposed also externally. This is done by the subroutine GRIPLO.

A number of options can be chosen by the user: A rectangular grid

can be full line grid, a dashed line grid, or simply consist of open

crosses at the grid points (intersections of grid lines); the grid can be

arbitrarily oriented, can be shifted arbitrarily relative to the lower left

corner of the grid area, the grid distances in x- and y- direction are

arbitrary, the plot of a bounding rectangle (representing the grid area)

can be suppressed, and other options. For a detailed information

see the comment statements in the sub-routine GRIPLO. Some grid

examples are shown below.

A A.1,* 1 1 S 0F'1 ) 11' IF 1 : NT SR~ I D P L0T S
a ~ hr I~iTI~I4OF imrLIT PARAHE)ERS CAN BE FO~UND IN THE SUBROUTINE

PLOT UNWIT M.14ETER
I

o (

M l.' I ll~t ' i I PL ('I .) IF "ItN 11I P.$6 1 1 1 .. 9 710 j1 ,4 s 4

(; "A I -:R I II- . 1 - 21"5 41 -0 2 0 0
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Fig~are 6.1: Examples of grid plots

A
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7. Title plot

The description of plots (bead, axis labels) is performed by the
subroutine TITLE, a part of GSPP. The main purposes of this program

are:

a) find the number of lines of alphanumeric characters which belong

to the title (in connection with GSPP, a maximum of 10 lines is
allowed; in isolated applications, a maximum of 100 lines can be
plotted by a single call);

b) find the number of alphanumeric characters per line (max. =80)

and the maximum number of characters;

c) find the maximum actual title length and height, compare it with

the corresponding allowed maxima, and reduce the symbol height, if

necessary.

d) Shift the title lines; four different title line patterns can be

obtained: the title lines can be plotted as appearing on the punched

cards (or any other input device); the title lines can be shifted to

the left (leftbound); the title lines can be shifted to the right (right-

bound); the title lines can be centered.

Moreover, the title can be put into a rectangular frame, called title

boundary rectangle; the title can be plotted in any direction (00-3600),

00 is the horizontal mode; when plotting on an electrostatic plotter

like the Versatec, the line width can vary between single and 5-fold

linewidth. The title itself is stored on a 2-dimensional array, each

column representing a 80-character string (I card).

Some typical examples are shown below. For more information

(title and parameter transfer) see the comments in the subroutine TITLE.

i

(*) If a symbol height reduction is necessary, a message will be

edited on the assigned output unit.
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L :AM!' OF Ir)WFFEICWNT 1 ILE PL.OTS f
T. .,X, ,Y X RT, I' P TII C I W%-EN

"I T"1,.l ItUl 1 ,-:141 N,-: i THIs TI TL.THI , I.CV, 1 01 NRL., 1 /AX lI OSPAR/IO

i .A!) 'WWt'. NU--.ER 11 TITI.L- LINE;
R l( ,, 'C:) Nil

,) 11 A lILE T) 'I I IF -,,. -Ro
I'%.."A) to .V X ;, 'I T M ' " H XI. TH RO-TsCHINCH I1OV I51I3 IPEN IC LC: " ): .;,,>: V~ Il'1

I, ."lq '1II (EA(:H1 COLLLIIN (F TIT( ) COR'RESPONDS TO ONE (1)
i I IT1.1 I l11C

A)) ,, 1: 0i4 IT I "J)h~ I--1 2);.-- l\
,,i
M.. . C , I f';), Ill o ¢')

P N 1 K' 0I

0%* I -

-.:6 L L 1I TI'. E(' -I )~ o)

I * PI.N:;

i:ALL 'I I TLECI IT, 10)
) CGk)

' PIA N1- lIEIIT

I I"

I ,

input parameters:

0., ZO., 0.3, 5., ., 18., 0., 0.3937, 0, 1, 5, 11, 0

;1 the 5 title lines

II

1
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THIS IS AN EXAMPLE OF RN AUTOfATIC-qL "Ti"LE P10T
USING THE SUBROUTINE TITLE (A P-'T OF '",,

THE TITLE CAN HAVE A M;A i"INUHN ,U I3,Z 0,7 1.J0 L"'1 SE - ,
IN CONNECTION WITH A PROFILE, CO.i.NU9. 09 31-D PLOT

ONLY 10 LIN.]S

%% A %"%61

i I'THIS 1S AN EXAM"'PLE OF AN AUTOMATICAL TITLE PLOT
iI USING THE SUBBOUT]NE TITLE (A PART OF GSPP).

THdE TITLE CAN HAVE A MAXIMUM NUMBER OF 100 LINES,

[II

THIS IS AN EXAMPLE OF AN AUTOMATICAL TITLE PLOT
USING THE SUBROUTINE TITEE (A PART OF GSPP).
THE TITLE CAN HAVE R MR.AMUM NUMBER OF 100 LINES,
IN COINECTION WITH A PROFILE, CONTOUR OR 3-D PLOT
IONLY 10 LINESS

Figure 7.h1 Examples of title plots

(The title and the top correspond to the first call, the

title at the bottom to the lastcall of the subroutine TITLE.

USIN TH SUROUTNE IT' (A ARTOF SPP
THE ITLECANHAVEA M. ~1M NMBEROF 00 LNES

- -t
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8. Range division

A particularly useful element out of GSPP, is the subroutine

RNGDIV; it is frequently used in GSPP for the purpose of replacing

the human decision process like finding "optimal" contour intervals,

"optimal" grid distances, or "optimal" tick mark distances. "Optimal"

is interpreted in terms of a most reasonable unbiased decision.

The main objectives of RNGDIV are as follows: given a range

on the real number line by a start- and endpoint (lower and upper

bound); the range should be divided into intervals of the form

(0.1, 0.25, 0.5)* 10k

$ with k an integer; the maximum number of intervals can be choseo by-
the user; there is the possibility of adjusting the interval start- and

endpoint such that the interval start- and endpoints have "coordinates"

of the form

( * 0. 1, * 0. 25, Y* 0.5) * 10"

with 0=l,..., ; , Z, 3 ;y=, 2. The adjustment can be a

range extension or a range contraction (e.g. in contouring). The program

returns, apart from the calculated interval length and the number of

intervals, also the recommended number of decimal places for a graphi-

cal representation of the scale numbers. (Recommended is: 3 significant

digits, if the maximum scale number is greater than 100, only integer

representation of the real scale number.) A special application is the

estimation of the number of significant digits for a specified range.

In the sequal a couple of range division examples, calculated using

RNGD1V, are listed. Further information can be found in the comment

Astatements to RNGDIV.
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9. Clipped boundary line plot
In connection with contour plots in regions of arbitrary shape

it is often requested to plot the boundaries of these regions with the

restriction that the boundary lines should be clipped off at its intersec-

tions with the boundary of the rectangular plotting domain.

The subroutine BNDPLO is designed for this purpose. It accepts,

in principle, an arbitrary number of (district) boundary lines which can

be plotted with different line widths on an electrostatic plotter or in

different colors on a multi-color plotter.

In order to clip off the line plot at the boundary of the rect-

W , angular domain, each line element passes a procedure like that described

in section 2.8.5 which provides sufficient information about

it



the location of the line element relative to the rectangular domain. The

actual intersection uses a simple line intersection algorithm. If so

desired, the boundaries can be mapped according to an arbitrary mapping

equation, .x = x (x, y), y = y (x, y), which has to be provided by the user

(subroutine GSPROJ).

The following example may illustrate the use of the subprogram.

C TEST OF THE SUBROUTINE 'BNDPLO'. FOR DETAILS SEE THE
C COMMENTS TO DBNDPLO'.

DIMENSION FORMD(09)
COMMON /XBOUND/X(IOe) /YBOUND/Y(IG0) /DOUINFINAE(2S)

/BOUPEN/NPEN(IO) /CCLIP/XLXUYLYU
INPUT=5
NOUT=6

C READ AND ECHO THE NUMBER OF BOUNDARIES, ITS START- AND
C EHDPOINT LOCATIONS ON THE VECTORS X(.) AND Y(.) AND THE
C CORRESPONDING PENUIDTHS NPEN(.)

READ(INPUT,S) NAECI)
M=NAE(I)
NB32*NAE(I)+I
READ(INPUT,*) (NAE(I),I=2N)
READ(INPUT,) (NPEN(I),IwIN)
WRITE(NOUT,10)

Io FORMATCIHO,4X,'BOUNDARY LINE INFORMATION VECTOR NAE(.)',
/,5x." I NAE(I) NAE(I+1) NPEN(1/2)',//)
DO I uINB12

12=1/2

I URITE(NOUT,11) INAE(I),'NAECII),NPEN(I2)
N=NAE(II)

11 FORMAM(H 4,15,19,1D 8,110)

C READ INPUT FORMAT FOR BOUNDARY COORDINATES
READ(INPUT,16) FORMH L16 FORMAT(IOA4)

C READ AND ECH1O THE BOUNDARY COORDINATES

URITE(NOUT 12)
12 FORMAI(IHS,4X,'BND# I X(I) Y(I)',//)

N=NAE(I)
DO 2 I=1N
IS=NAE(2*])
IE=NAE(2I+1)
DO 2 J=ISIE
READ(INPUT,FORMD) X(J),Y(J)

2 URITE(NOUT,13) IJ,X(J),Y(J)
13 FORMAT(IH ,4X,2I15X,2FI9.2)
C READ AND ECHO LOUER AND UPPER X- AND Y-COORDINATES OF
C THE RECTANGULAR PLOTTING DOMAIN

READ(INPUT,) XLXUYLYU
URITE(NOUT,14) XLXUYLYU

14 FORMAI(IH9,4X,'PLOTTIN6 DOMAIN LIMITS t',// 15X,*-XLOUER ... ",FI9.HSX,-XUPPER .. "FO tX

*'YLOUER ... ",FI9.2,SX,'YUPPER ... ',FIe.2)
C READ AND ECHO PLOT PARAMETERS (ORISIN, SCALE)

READ(INPUT,) X9,Y0,FAC
URITE(NOUT,15) XO,Y$,FAC

15 FORMAT(IHO,4X,'PLOT PARAMETERS t',//,5X,'Xe ...
*F19.2,5X,'Yo ... , F1$.2,5X,'FAC ... ',F10.2)

C INITIALIZE PLOT
CALL PLOTS(.,0.,10)
CALL FRA1E(,0.,I00.,O.,70.)

C PLOT THE BOUNDARIES
CALL DNDPLO(X0,Y0,FAC,0,0,9)

C PLOT 111E BOUNDARY RECTANGLE OF THE PLOTTING DOMAIN
CALL RECT(Yo1 XO,(YU-YL)/FAC,(XU-XL)IFACe.,1)

C STOP PLOT
CALL PLOT(e.'e.,999)
STOP

END
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Input data to the above program
1 5

*1 ~ 2 1,9,1O 26127,35,36l4,401,47
3 1,2,3,1,2
4 C9K 2F1@,2)

5 1 2 45.80 -21.80
6 1 3 41.60 -16.40
7 1 4 41.80 -9.40
8 1 5 45.20 -15.20
9 1 4 50.60 -14.60

10 1 7 54.00 -17.20
11 1 8 59.20 -18.00
12 1 9 50.0 -18.80
13 1 10 45.80 -21.80
14 2 14 55.00 5.20
15 2 15 62.00 1.80
16 2 16 68.00 -4.60
17 2 17 84.60 -6.00

18 2 18 86.40 -3.89
19 2 19 88.20 -0.89
e 2 Re 88.20 1.40
21 2 21 81.80 6.40
22 2 22 78-00 11.60
23 2 23 78-00 21.20

24 2 24 75.60 24.09
25 2 25 62.40 22.60
26 2 26 50.40 25.20

27 2 27 45.80 23.60
28 2 8 46.06 12.80

29 2 29 49.80 7.80

30 2 39 55. " 5.20
31 3 36 7140 11.8
32 3 37 75.20 4.80
33 3 38 62.0G 6.40

34 3 39 55.20 9.80
35 3 40 54.00 1 A(4

36 3 41 54,0 P.40 |
37 3 42 64.80 16.24
38 3 43 69.20 19.20
39 3 44 71.40 11.80

40 4 45 39.40 35.60
41 q 46 54.80 32.00

43 4 48 50.60 35.4044 4 49 39-40 35.60

45 5 52 103.40 22.60
46 5 53 84.80 33.40
47 5 54 68.90 L8.0
48 5 55 61.80 29.89
49 5 56 63.00 35.09

50 5 57 79.80 39.80

51 5 58 193.40 2~2.60
52 25.2,92.2,-12.5%40.9
53 3.,3,5,

d i.

Figure 9.1 Example of clipped boundary line plot corresponding to

the above input data
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